OTIF Usage Guide

Andras Lang

andras.lang@vanderbilt.edu

Institute for Software-Integrated Systems
Vanderbilt University
March 2004

OTIF Usage Guide

Table of Contents

TaDIE Of CONTENTS ..ot re e nes 2
1. Architectural desCription......ccccceeieeieiicie e nre e 3
2. Manager aPPlICALION........coeeeeieierer et 4
3. Workflow paradigm and iNterpreter ... 6
4. Generic ToolAdaptor appliCationcoceoevererieienesee s 10
5. UAMCORBA AP ..ottt st sttt e e nsensessesressesnens 12
6. TA_MFEC_SUPPOIT AP .ot 20
7. TA_XSLT_SUPPOIT APL ... 21
8. Multiple-part doCumMENt SUPPOITooveeiieeieceesie e 22
9. Howtocreateasimple ToolAdaptor appliCation.........c.cocevererienieeienene s 24
10. How tocreateasimple Tranglator application..........ccoceveeveneeninieneeseseeseee 29
11. UdmCORBA exception handling model............cccooveeeveereeieniese e 30
APPENTIX A e b ettt n et e bR R enes 32

BackPlane_config.xml parameter file.......cccoveveieveciececece e 32
y N 0] 0 1< 0 [L = JR PSPPSR 34

1. Example of a*document publish” mechanism.ccccceeeiininninnenics 34

2. Example of a“document fetch” mechanism.cccccvevevieveccesecne e, 35
APPENTIX C. oot p et b nn e enes 36

Simple Trandator application example.........ccccovvevirieerecie s 36
APPENIX Do 37

How to create the.cpp, .dtd and .h filesby the Udm.exe.........cccccevvevvvvecncnenee. 37
APPENAIX E. oot et b e et e et neenae s 38

TroUDIESNOOLING ..o e 38

OTIF Usage Guide

1. Architectural description

The main components of the OTIF system:
- Backplane application
Manager application
Workflow paradigm and interpreter
Generic Tool Adaptor application
UdmCORBA API
ToolAdaptor DLL AP

The Backplane isthe server application. It runs the trandator applications to translate
the different documents. It uses a configuration parameter file called
BackPlane_config.xml [Appendix A.].

Backplane can be managed by the M anager applicationand by the workflow GME
interpreter. One can design atool chain in GME with the workflow paradigm (WFL) and
register it in the Backplane server with the interpreter. A tool chain specifies the
tranglators, tool adaptor types and paradigms used in the workflow tool chain.

Generic ToolAdaptor application is used to publish documents or subscribe to
paradigms which are available in the Backplane server. The goal of the generic
tooladaptor application is to prevent the users form implementing their tool adaptors. If a
paradigm is available in the Backplane that paradigm can be used to fetch or publish
documents.

There are three APIs to create Tool Adaptor [Appedix B.] or Translator [Appendix C.]
applications. The UdmCORBA API contains the basic interfaces, the
TA_MFC_Support API extends it with pre-defined MFC dialog boxesand the
TA_XSLT_Support API extends it with XSLT-based transformation methods.

Y ou may find a more detailed description and concepts of the OTIF framework in the
OTIF.pdf file.

Y ou may find a detailed description about the OTIF communication protocol in the
OTIF_Protocol_Description.pdf.

Y ou should be familiar with the latest UDM package and the GME2000 application
to use this framework effectively. Y ou may find detailed information about these on the
ISIS website.

OTIF Usage Guide

2. Manager application

After the Manager application started, one has to login to the active Backplane server
with the correct password of the server. This password can be changed anytime with the
Manager application. The default password is blank.

After authentication one is able to view the registered paradigms and tranglators, get
information about the available documents and destroy a document, shutdown the
Backplane server or change the authentication password.

Paradigm: Paradigm is a metamodel. Paradigms can be created with GME
application and exported to an xml type file. These xml files can be registered in the
Backplane server.

Trandator: Translator can be any applications, which are able to read a document of
a paradigm and trangdlate it to another document of another paradigm. Translators can be
created with the OTIF static library and header files There are a couple of templatesin
this document which are good to start with. Trandators should be placed in the trandator
directories of the Backplane server.

1. Uploading a paradigm

One can upload a paradigm into the Backplane server which can be used
later by the trandators and tool adaptors. It won't be registered at once. It only
will be stored into the paradigms directory of the Backplane and can be used in
any workflow model later.

The name and version parameters and the name of the file of the paradigm
(inthe URL field) have to be specified. The paradigm files may be in the { OTIF
demo directory} /bin/paradigms directory.

There are two ways to register a paradigm:

0 With the http:// prefix oneis able to download an xml type paradigm file
from a specified location and register it.

o Withthelocal:// prefix oneis able to select alocal, xml type paradigm file
and register it.

A local file may be selected by the button (labeled with “...”) next to the

URL field.

2. Locked checkbox

A paradigm can be locked or unlocked. A locked paradigm could not be
unregistered.

OTIF Usage Guide

. Refresh datanetworks

Get information about the available documents in the Backplane server. It
lists the name, version, remarks, keepAlive parameter and the paradigm of the
document.

. Destroy datanetwork

One s able to destroy any kind of document in the Backplane server. The
document should be selected in the Available datanetworkslist.
. Shutdown backplane

One is able to shutdown properly the Backplane application. After
shutdown the manager application exits.

. Change password

One is able to change the authentication password of the Backplane. Both
the old and the new passwords are necessary.

OTIF Usage Guide
3. Workflow paradigm and inter preter

The OTIF framework supports workflows. One is able to define a so called tool chain
which may contain any kind of translators, different types of tool adaptors and
connections between them. This tool chain is a specific workflow model of any system
based on the OTIF framework.

The OTIF workflow modeling engine leans on
o theworkflow paradigm and
o theworkflow interpreter.

The wor kflow paradigm is a GME paradigm which defines the different elements
and connections of the workflow.

These elements are:

Backplane denotes the Backplane server

Trandator denotes any kind of translator application

Tool Adaptor denotes any kind of tool adaptor application

Paradigm denotes any kind of paradigm used by the translator and tool
adaptor applications

Link between any Tool Adaptor or Transator denotesthe connections
between the tool adaptor and tranglator applications.

OO0 oo

o

Oneis able to define and visualize any kind of OTIF workflow model in GME with
the registered workflow paradigm.

The workflow models based on the workflow paradigm can be interpreted by the
wor kflow inter preter.

The interpreter is a so called GME component which is able to process a visualized
workflow model and send this XML based configuration information[Appendix A.] to
the Backplane server.

When a new configuration arrives to the Backplane, it resets itself and loads it.

Note: For more information about registering the workflow paradigm and
interpreter, please read the readme_core.txt file.

OTIF Usage Guide

Let’s look at through a creation of a ssmple workflow model how oneis able to
design aworkflow moddl.

Sarting the modeling environment

Start the GME application and create a new project with the WFM (workflow
modeling) paradigm.

Insert a new diagram under the root object of the workflow model. Everything
which is visualized and defined on this diagram is a part of our new model.

Open the newly created diagram and let’s start to design a new model.

Designing our new wor kflow model

First of al put a Backplane object onto the diagram. As we can see there are afew
attributes of the Backplane object. Let’s go through them:

(0]

o

(0]

name denotes the name of the running Backplane server.

For example write “TEST” here.

version denotes the version of the running Backplane server.

For example write “1.0” here.

uml Paradigm denotes the name of the xml file which storesthe UML
paradigm (Note: in the default installation of the OTIF framework it is the
“uml.xml” file).

For example write “uml.xml” here.

logLevel denotesthe level of the logging procedure in the running
Backplane server. For more information [Appendix A.].

For example write “3” here.

onlyOneManager specifies that only one or multiple Manager application
can connect to the Backplane at one time.

For example just leave the default.

transatorDocument specifies the keepAlive value for the documents
published by any trandlator applications to the Backplane server.

For example write “300” here.

OTIF Usage Guide

Let's start with the beginning of our workflow model so put a Tool Adaptor object
onto the diagram. It has only the type attribute.

Y ou can distinguish the different tool adaptor applications through the
type attribute. Every tool adaptor application has to log as a specific type in the
Backplane server.

For example write “MATLAB_PUBLISHER” here.

Every tool adaptor which logged in the Backplane server with this type
will act in our workflow model like this Tool Adaptor object.

Let’s put a transformation mechanism into our workflow model. So put a
Trandator object onto the diagram. It has three attributes. Let’s go through them:
0 name denotes the name of the trandator application in the OTIF
environment.
For example write “Matlab2ECSL” here.
0 version denotes the version of the trandator application in the OTIF
environment.
For example write “1.0" here.
o trandlatorAction identifies the name of the file of the trandator
application.
For example write “trandator_matlab2ecd.exe” here.

The trandator application files should be in the { OTIF demo
directory}/bin/trandators or in the { OTIF demo
directory}/bin/xd_trangdlators. It depends on the type of the trandator.

There are two types of tranglator:
1. EXEtypetrandators are applications developed by the user with
the OTIF libraries.
2. XSL type trandators are standard xd files created by the user.
These xd files are used in the trandation process by the generic
xdlt trandator application.

Let’s connect these objects together. Switch to “Connect Mode” in GME. Select
the Tool Adaptor object first as the source of the Link object than select the
Trangdlator as the destination of the Link object.

In the workflow model these Links object denotes the specific paradigms
which are used in the communication between the tool adaptor and trans ator
applications.

OTIF Usage Guide

So define the paradigm of this Link object. To do thisthe first step isto put a
Paradigm object onto the diagram. It has three attributes:
o paradigmName denotes the name of the paradigm in the OTIF
environment.
For example write “Matlab” here.
o paradigmVersion denotes the version of the paradigm in the OTIF
environment.
For example write “1.0” here.
0 paradigmFile identifies the name of the xml file of the paradigm.
For example write “matlab.xml” here.

The paradigm files should be in the { OTIF demo directory} /bin/paradigms
directory.

The second step isto tell the Link object that this is your paradigm and the
Tool Adaptor and Translator object will communicate through this paradigm.

So switch “Set Mode” in GME and click on the Paradigm object with the
right mouse button and select the Link object by clicking on it.

So what have we done?

We have just created a workflow model, in which any kind of tool adaptor application
logged inasa“MATLAB_PUBLISHER” type can publish adocument. The paradigm of
this document is “Matlab 1.0” defined by matlab.xml paradigm file. Every documents
based on this paradigm published to the Backplane server will be trandated by the
“Matlab2ECSL” trandlator.

Naturally at this status we can not get the result of thistool chain until we define a
new type of Tool Adaptor object and use it as an output of the trandlator. This can be done
the same as in the case of defining of the previous Tool Adaptor object.

Interpret our new wor kflow model
Let’'s use our newly created workflow model so interpret it. Click on the interpret
icon. A dialog box will show up. By the default installation you may just push the

OK button and send the new configuration to the Backplane server.

0 “Backplane password” option lets you supply the correct password of the
Backplane server if it is not blank.

OTIF Usage Guide

4. Generic ToolAdaptor application

The Generic Tool Adaptor application can be used as any kind of Tool Adaptor type
application. One has to choose a specific type of Tool Adaptor after starting the
application.

Oneis able to publish or fetch any kind of documerts which are supported by the
chosen Tool Adaptor type.

The avail able backends are the memory, XML and GME to fetch (save) or publish
(load) a document.

One has three options after choosing a specific type of Tool Adaptor:

1. Publish

One has to specify the paradigm (metamodel) of the document. The
supported paradigms are defined by the type of the Tool Adaptor.

One has to specify the name, version, remarks and keepAlive parameters
of the document. After specifying the correct parameters one has to select the
document file from the local disk.

The application gives the opportunity to transform an XML file with an
XSLT script right before sending it by clicking on the XSLT transform checkbox.
It will ask for the specific XSLT file to do the transformation.

It is useful in that casewhen a nonUDM conform XML type document
should be published into the Backplane, so the document can be transformed into
a UDM conform XML type document with a specific XSLT script.

Note: only XML files can be transformed with the XSLT preprocessing.

One may attach unstructured (not UDM comfort) documents (files) to any
documents.

One may update a previously published and still existing document in the
Backplane server by checking the corresponding checkbox. It will give alist of
documents which can be updated.
The updated document will be translated by the translators as the former
document was. Every ToolAdaptor will get a new natification if an updated document
will be available.

10

OTIF Usage Guide

2. Subscribe

One has to specify a paradigm (metamodel). The supported paradigms are
defined by the type of the Tool Adaptor.

After the subscription one will get a notification when a document of that
paradigm is available.

If adocument is available one is able to fetch and save the document on
the local disk. Both of the memory, xml and gme backend can be used to save the
document.

If the gme backend is used to save the document, one has to specify a
metamodel of the mga layer. This metamodel will be used to save the document.

The application gives the opportunity to transform the fetched XML file
with an XSLT script. One hasto select the XSLT fileto do the XSLT
postprocessing.

It is useful in that case when a specific, nonnUDM XML type document
should be fetched from the Backplane, so after fetching the document can be
transformed into any kind of XML type document with a specific XSLT script.

Note: only XML files can be transformed with the XSLT postprocessing.

3. Unsubscribe
One has to specify a paradigm (metamodel) among from the subscribed

paradigms. After the unsubscription one will not get any notification when a
document of that paradigm is available.

11

OTIF Usage Guide

5. UdmCORBA API

This API contains the basic interfaces to implement a Tool Adaptor or a Trandator
application.

The API provides 3 class interfaces:

cl ass CORBADat aNetwor k : public Udm : Smart Dat aNet wor k

o static void Initialize(const char *paradi gm nane, const char
*par adi gm ver si on) ;

This static method should only be used if one wants to use
CORBADataNetwok aone in the application without using the Tool Adaptor or
the Trandator classes. It initializes the CORBA DataNetwork with specifying the
name and version of the remote paradigm. After initialization one is able to create
anew CORBADataNetwork and use it in the same way as the
SmartDataNetwork.

The difference between the two datanetworks is that SmartDataNetwork
works with “local” paradigm and CORBADataNetwork works with “remote”

paradigm.

Note: CORBADataNetwork should not be created without initialization.
Every time a CORBADataNetwork is created with a different remote paradigm
the initialization should be processed with the correct name of the paradigm.

0 string getParadi grNane() ;

This method returns the name of the paradigm of the datanetwork.

0 string getParadi gnVersion();

This method returns the version of the paradigm of the datanetwork.

o | ong publishDocunment (const char *docName, const char *docVersion, const char
*renmarks, long keepAlive, const |ong previous_docl d=NO PREVI QUS_DOCUVENT) ;

This method publishes the CORBA Datanetwork to the Backplane server.
One has to specify the document name, version, remarks and keepALive
parameter. The keepAlive parameter specifies until how many seconds will be
kept the document in the server.

The previous_docld should be NO_PREVIOUS DOCUMENT whenever
a completely new document is published, otherwise it is the backplane-
generated 1D of an existing, previously published document. If itisavalid ID
the document will be updated with the new information.

The method returns the backplane-generated 1D of the published
document.

12

OTIF Usage Guide

voi d fetchDocunent (I ong docl D const | ong of fset=0);

This method fetches a document from the server. One has to specify the
document ID which identifies the document in the server.

voi d rel ease();

This method releases al memory usage of a CORBA Datanetwork.

| ong Cet Dat anet wor KCbj ect | D(I ong uni que_i d);
| ong Cet Dat anet wor kCbj ect | D(Udm : Obj ect &obj) ;

These methods return an 1D of an object in the CORBA Datanetwork. The
first one uses the unique _id parameter of an Udm::Object.

voi d Set Dat anet wor kObj ect | D(1 ong uni que_id, long dn_id);
voi d Set Dat anet wor kQoj ect | D(Udm : Qbj ect &obj, long dn_id);

These methods set the ID of an object in the CORBADatanetwork. The
first one uses the unique_id parameter of an Udm::Object.

Udm : Obj ect Get Obj ect Byl d(long dn_id);
This method returns the corresponding udm object.

| ong Get oj ect Host | nfo(Udm : Obj ect &obj) ;

This method returns the | P address of an object in the
CORBADatanetwork. The I P address of an object is the IP address of a host,
which created that object.

| ong Get oj ect Processl nfo(Udm : Cbj ect &obj);

This method returns the ID of a process, which created the object specified
by the input parameter.
| ong Get vj ect Thr eadl nf o(Udm : Qbj ect &obj) ;

This method returns the ID of athread, which created the object specified
by the input parameter.

voi d attachDocunent (const | ong docld, const char *paradi gm nane, const char
*par adi gm versi on, const |ong of fset=0);

This method attaches a structured element to the publishable document. It
will not process the structured document, just add it to the existing document.

voi d addAddi tional Fil e(const char *fil enane, const char *directory="");

This method addes an unstructured element/file to the publishable
document.

voi d get Addi tional Fil eList(multimap<string, string> &dditional _files);

This method returns the list of the additional elements/files of the
document. The first string is the real name, the second string is the physical
name of the file (the additional files are stored in temporary files after the
fetching process).

13

cl ass

OTIF Usage Guide

string getPhysical Fil enane(const char *fil enane);

This method returns the physical name of the additiona file. The filename
is the real name of thefile.

voi d copyAddi tional Fi | esFron{ CORBADat aNet wor k *sour ce);

This method copies the additional files from the source document.

Tool Adapt or
Tool Adaptor (i nt argc, char **argv);

This method creates the “UML paradigm” type Tool Adaptor. This
Tool Adaptor works with the UML paradigm.

Tool Adapt or (const char *tool adaptor_type, int argc, char **argv);

One has to specify the type of the ToolAdaptor. This type hasto be
registered in the Backplane server.

string get Tool Adapt or Type() ;
This method returns the type of the Tool Adaptor.

voi d get Vor ki ngPar adi gns(map<l ong, PARADI GV STRUCT> &par adi gnis) ;
This method returns the supported paradigms of the Tool Adaptor.

voi d get TAConfi g(list<CONFI G &config);

This method returns the list of the paradigms of the publishable document.
An item of the list identifies the paradigms of a publishable document.

voi d get TASubscri babl e(li st <CONFI & &confi g);

This method returns the list of the subscribable paradigms of the
Tool Adaptor.

vect or <DOCUMENT_STRUCT> get Docunent s() ;

This method returns the vector of the iformation of the documents existing

in the Backplane server.

(o]

CORBADat aNet wor k* get Dat anet wor k(const Udm : UdnDi agr am &ret ai nf o) ;

One has to specify the diagram object of the paradigm. This method
returns a pointer of the CORBA Datanetwork. It can be used only if the
specific type of Tool Adaptor support only one paradigm.

14

OTIF Usage Guide

CORBADat aNet wor k* get Dat anet wor k(const Udm : UdnDi agr am &nmet ai nfo, const char
*par adi gm name, const char *paradi gmversion);

One has to specify the diagram object of the paradigm, the name and
version of the paradigm. This method returns a pointer of the
CORBA Datanetwork. It should be used if the specific type of Tool Adaptor
support more than one paradigm.
bool isRegi steredDat anet wor k(const char *paradi gm nane, const char
*par adi gm ver si on) ;

This method returns true if a datanetwork (corresponding to a paradigm) is
not processed yet.

voi d subscribe(const Udm : UdnDi agr am &net ai nf o) ;

One has to specify the diagram object of the paradigm. This method
subscribes to a specific paradigm in the Backplane server, so the server will
notify the ToolAdaptor if a document in this paradigm arrives. This method
can be used only if the specific type of Tool Adaptor support only one

paradigm.

voi d subscribe(const Udm : UdnDi agr am &net ai nfo, const char *paradi gm nane,
const char *paradi gmversion);

One has to specify the diagram object of the paradigm, the name and
version of the paradigm. This method subscribes to a specific paradigm in the
Backplane server, so the server will notify the Tool Adaptor if a document in
this paradigm arrives. It should be used if the specific type of Tool Adaptor
support more than one paradigm.
| ong publishMul tipl eDocunent s(1i st <CORBADat aNet wor k*> dns, const char

*docNane, const char *docVersion, const char *renarks, |ong keepAlive, const
| ong previ ous_docl d=NO_PREVI QUS_DOCUVENT) ;

One is able to publish a multiple-part document to the Backplane with this
method. All parts of the document should be inserted into the
CORBADataNetwork* list. The document name, version, remarks and
keepALive parameter should be spcified. The keepAlive parameter specifies
until how many seconds will be kept the multiple-part document in the server.

The previous _docld should be NO_PREVIOUS DOCUMENT whenever
a completely new document is published, otherwise it is the backplane-
generated ID of an existing, previously published document. If itisavalid ID
the document will be updated with the new information.

The method returns the backplane-generated 1D of the published
document.

voi d process();

This method checks only one time that a document is arrived to the
Tool Adaptor.

15

OTIF Usage Guide

void run();

This method checks in an infinite loop that a document is arrived to the
Tool Adaptor until it terminates.

void term nate();
This method terminates the Tool Adaptor run method.

voi d | ogout ();

This method logs out the Tool Adaptor from the Backplane server, so the
Tool Adaptor will not get any notifications.

string getHostInfoString();

This method returns the |P address of the host in “A.B.C.D” format.

| ong get Host | nfoLong();

This method returns the |P address of the host in long type format.
I ong get Processl nfo();

This method returns the ID of the process.
I ong get Thread! nfo() ;

This method returns the ID of the thread.

virtual void getPublishStatus(long offset, long |ength);

One may implement this method to get information about the publishing
process. This method called when the offset is incremented.

virtual void getFetchStatus(long offset, |long |ength);

One may implement this method to get information about the fetching
process. This method called when the offset is incremented.

virtual void getPublishStatus(long percent);

One may implement this method to get information about the publishing
process. This method called when the percent is incremented.

virtual void getFetchStatus(long percent);

One may implement this method to get information about the fetching
process. This method called when the percent is incremented.
virtual void notify(const char *paradi gmnane, const char *paradi gmversion,
const char *nane, const char *version, const char *remarks, |ong docld, |ong
keepAl i ve) =0;

This abstract method should be implemented by the actual Tool Adaptor. It
is invoked automatically when a documents arrives to the ToolAdaptor. The
paradigm_name and paradigm_version store the name and version of the
paradigm of the arrived document.

16

cl ass

OTIF Usage Guide

virtual void changedExi stingDocunent (const char *name, const char *version,
const char *remarks, long docld, |ong keepAive);

This method should be overridden by the actual Tool Adaptor to get
notification if an available datanetwork is changed. It isinvoked automatically
when a parameter of an available documert is changed. If the available
document is destroyed the keepAlive value will be -1.

Note: The following Tool Adaptor interface definitions are only needed if
one wants to create generic Tool Adaptor or Translator applications.

Un : : Di agram r enot eFet chM/Par adi gn{(const char *nane, const char *version);

This method fetch a remote paradigm from the Backplane server. One has
to specify the name and version parameter of the paradigm.

static voi d getBackpl aneTool Adapt or Types(list<string> & ypes, int argc, char
**argv);

This method returns all the types of the Tool Adaptors which are available
in the Backplane server.

static void getBackpl anePar adi gns(map<| ong, PARADI GM STRUCT> &par adi gns, i nt
argc, char **argv);

This method returns all the paradigm which are available in the Backplane
server.

U :: d ass get Docunent Root obj ect Met a(l ong docld, const Um::Di agram
&mret a_di agram ;

This method fetch the name of the meta of the rootobject (udm object) of
the corresponding remote document in the Backplane server. The docld
identifies the remote document.

Tr ansl at or
CORBADat aNet wor k *f r onDN,;

This variable points to the input CORBA Datanetwork, which was created
by the constructor of the Trandator. Note: this variable may not be used if a
multiple-part document arrives to the Trandator.

CORBADat aNet wor k *t oDN;

This variable points to the output CORBA Datanetwork, which was created
by the constructor of the Trandlator.

17

OTIF Usage Guide

Transl ator (const Udm : UdnDi agr am & rom net ai nfo, const char *fromnane, const
char *fromuversion, const Um::C ass & romrootclass, const Udm : UdnD agram
& o_netai nfo, const char *to_name, const char *to_version, const Unl::d ass
& o_rootclass, int argc, char **argv);

One has to specify the diagram object, the name and version parameter
and the root object of the input and the output paradigm. These paradigms
have to be registered in the Backplane server.

voi d addFronDN(const Udm : UdnDi agr am &f r om net ai nfo, const char *from nane,
const char *fromuversion, const Ur::C ass & romrootclass);

This method add a specific CORBADataNetwork to the working
datanetwork list of the Trandator. It may be used when the Trandator is
working with more than two (an input and an output) paradigm.

CORBADat aNet wor k *get _fronDN(const char *name, const char *version);

This method returns a pointer to a CORBA DataNetwork specified by its
name and version parameter. If the Trandator is working with a multiple-part
document one can get the multiple parts of the document with this method.

CORBADat aNet wor k *get _fronDN(const char *name, const char *version, const |ong
of f set =0) ;

This method returns a pointer to a CORBA DataNetwork specified by its
name and version parameter. The offset parameter specifies exactly the
CORBADataNetwork with the offset value if multiple parts have the same

paradigm.

CORBADat aNet wor k *get _fronDIN() ;

This method returns a pointer to the input CORBADatanetwork, which
was created by the constructor of the Trandator.

CORBADat aNet wor k *get _t oDN() ;

This method returns a pointer to the output CORBA Datanetwork, which
was created by the constructor of the Trand ator.

void run();

This method checks in an infinite loop that a document is arrived to the
Trandator.

voi d publish(char *doc_nane, char *doc_version, char *doc_renarks);

This method publishes the CORBA Datanetwork specified by the toDN
variable.

voi d publ i sh(CORBADat aNet wor k *dn, const char *doc_nane, const char
*doc_version, const char *doc_remarks);

This method publishes the CORBA Datanetwork specified by the dn input
parameter.

18

OTIF Usage Guide

voi d publishMuil ti pl eDocunent s(li st <CORBADat aNet wor k*> dns, const char
*doc_nane, const char *doc_version, const char *doc_remarks);

This method publishes alist of CORBADatanetworks specified by the dns
input parameter.
virtual void notify(const char *nane, const char *version, const char
*remar ks, const unsigned | ong nunt Docs) =0;

This abstract method should be implemented by the actual Trandator. It is
invoked automatically when adocument arrives to the Trandator. If itisa
multiple document, the numOfDocs parameter will contain the number of the
structured elements in the document.

Un :: d ass get Docunent Root obj ect Met a(l ong docld, const Uni::Di agram
&met a_di agram ;

This method fetch the name of the meta of the rootobject (udm object) of
the corresponding remote document in the Backplane server. The docld
identifies the remote document.

19

OTIF Usage Guide

6. TA_MFC_Support API

It is a convenient interface to use the OTIF built-in MFC dialog boxes with the
UdmCORBA API.

This API gives the following methods:

o int showretchD g(const char *|abel);

This method shows the OTIF built-in fetch dialog box. The return value
can be the MFC defined IDOK or IDCANCEL, the return value of the dialog
box.

o void addStringFetchD g(const char *text);

This method adds a string to the listbox of the OTIF built-in fetch dialog
box.

o void clearFetchD g();

This method clears the listbox of the OTIF built-in fetch dialog box.

o int showPublishD g(CString *nane, CString *version, CString *renarks, |ong
*keepAlive, CString *filename, const char* fil eextension="*");

This method shows the OTIF built-in publish dialog box. The parameters
can be used as the return values of the fields of the dialog box. The return
value can be the MFC defined IDOK or IDCANCEL, the return value of the
dialog box.

o int showPublishAttachnmentD g(CString *nane, CString *version, CString
*remarks, long *keepAlive, CString *filename, std::map<CString, CString>
attachnents, const char fileextension="*");

This method shows the OTIF built-in publish with attachment support
dialog box. The parameters can be used as the return values of the fields of the
dialog box. The return value can be the MFC defined IDOK or IDCANCEL,
the return value of the dialog box.

o int showDat anetwor kArrivedD g(const char *nane, const char *version, const
char *remarks, |ong keepAlive, CString *fil enane, const char*
fileextension="*");

This method shows the OTIF built-in datanetwork arrived dialog box. The
parameters are displayed in the dialog box. The filename parameter can be
used as areturn vaue of the filename field of the dialog box. The return value
can be the MFC defined IDOK or IDCANCEL, the return value of the dialog
box.

20

OTIF Usage Guide

7. TA_ XSLT_ Support API

Fromthe 1.2.1 version OTIF gives XSLT transformation support. The XSLT
transformation support may be used in those cases when a nonUDM specific XML file
wants to be published or after the fetching process one wants to automatically convert the
fetched XML file with XSLT transformationto another XML file.

This API gives the following methods:

0 XSLTransformer();

This method creates the class which gives the XSLT support.

0 int executeTransforn(const char *input, const char *xslt, const char *output,
const bool generate_dtd, const char *dtd_file, const char *rootclass);

This method does the transformation on a specific XML file. The input
parameter identifies the name of the input XML file. The xdlt parameter
identifies the name of the file which stores the XSLT script. The output
parameter identifies the name of the output XML file.

The generate_dtd parameter should be true if one wants to generate a
UDM specific DTD file for the output XML file.

If one generates a DTD file one has to specify the name of the DTD file
and the name of the root class of the paradigm of the output XML file.

0 void CGenerateDTDfil e(const Unm ::D agram &di agram const char *dtd_file);

This method generates aDTD file from a specific paradigm. One has to
specify the diagram object of the paradigm and the name of the DTD file.

Note: The methods are in the OTIF_XSLT namespace.

Here is a smple usage example:

false, ""

/Il fetch and save the avail abl e docunent in a tenporary file
dn->CreateNew("tenp_test.xm", "test", Root::neta, Udm :CHANGES PERSI ST _ALWAYS);
dn- >f et chDocunent (docl d) ;

dn->C oseWt hUpdat e() ;

try {
/Il create the XSLT transl ation support object
OTl F_XSLT: : XSLTr ansf orner xslt;
/] do the XSLT transformation which is specified by the test.xsl file
int result = xslt.executeTransforn{("tenp_test.xm ", "test.xsl", "test.xm",

")

/1 catch any XSLT transformati on exceptions
} catch (OTI F_XSLT:: xslt_exception &) {
cerr << "XSLT translation error: " << e.what() << endl;

}

/] after the transfornati on delete the tenporary file
Del eteFile("tenp_test.xm");

XSLT transformation example

21

OTIF Usage Guide

8. Multiple-part document support

From the 1.2.1 version OTIF gives multiple-part document support. Multiple-part
document is a document which contains two or more single documents.

There are cases when a Translator does not just get a document and creates another
one from it. For example, a Trandator may merge two documents into one or may update
a document with arother one.

In these cases it is necessary for the Trandator to fetch multiple documents and for
the Tool Adaptors to publish multiple documents.

In the OTIF environment the Trandator can fetch a document which can be asingle
document or a document with multiple parts These multiple parts stand by themselves as
different single documents.

Multiple-part documentsin the workflows

Let's see how multiple-part documents can be defined in a workflow. As we see there
can be a connection between a Tool Adaptor type and a Trandator which defines that this
type of Tool Adaptor can publish a document to this Trandlator. The paradigm of the
document can be defined by the containment in one of the set of a defined paradigm.

If we create two links between a type of ToolAdaptor and a Trand ator, it means that
this type of Tool Adaptor will publish a multiple-part document which contains two single
documents. The two links will specify the paradigms of the two single documents.

Note: The generic tools of the OTIF framework currently do not support to define a
Tool Adaptor type which may publish more multiple-part documents or a multiple-part
document and single documents, too.

22

OTIF Usage Guide

Multiple-part documentsin the Trandators

Here is a ssimple usage example:

/] Define the nyTranslator class in the original way
class nyTranslator : public UdmCORBA: : Transl ator {

public:

void notify(const char *nane, const char *version, const char *remarks, const
unsi gned | ong nunX Docs) {

/l Oreate the root object of the docunent with the ESCM UDM v1. 0 paradi gm
ESCM UDM : ESCM t op = ESCM UDM : ESCM : Cast (get _fronDN(" ESCM UDM', "1.0") -
>CGet Root Ohj ect ());

[/l Create the root object of the document with the ESM. v1.0 paradi gm

ESM.: : Root Fol der root Fdr = ESM.: : Root Fol der: : Cast (get _fronDN("ESM.", "1.0")-
>Cet Root hj ect ()) ;

/1l Update the docunment with the ESM. v1.0 paradi gm

/1 Publish the updated docunent to the Backpl ane
publ i sh(get _fronDN("ESM.", "1.0"), nane, version, "after the ESM. update");

Multiple-part document in a Tranglator example

Multiple-part documentsin the ToolAdaptors

Here is a smple usage example:

/] Create the Tool Adaptor object with the type of ESM._UPDATER
nyTool Adapt or ta("ESM._UPDATER', argc, argv);

/] Create the two datanetworks which we want to publish later

UdnCORBA: : CORBADat aNet wor k *dn = t a. get Dat anet wor k(ESCM_UDM : di agram " ESCM UDM',
"1.0");

UdnCORBA: : CORBADat aNet wor k *dn2 = ta. get Dat anet wor k(ESM_: : di agram "ESM.", "1.0");

/] Open the two files and load into the two datanetworks
dn- >CpenExi sti ng("escm udm sanpl e. xm ", "ESCM UDM') ;
dn2->QpenExi sting("esn _sanpl e. nga", "ESM.");

/Il Create a |list of CORBADat aNet wor k*
|'i st <UdmCORBA: : CORBADat aNet wor k*> docs;

[/ Put the two datanetwork into the |ist
docs. push_back(dn);
docs. push_back(dn2);

/1 Publish a nultiple part docunment which contains the two datanetwork
ta. publ i shMul ti pl eDocunent s(docs, "esm doc updated', "1.0", "", 300);

Multiple-part document in a Tool Adaptor example

23

OTIF Usage Guide

9. How to create a ssmple ToolAdaptor application

Let’s create a simple Tool Adaptor application with MFC support, which will publish
a document in Matlab 1.0 paradigm and fetch documents in ECSL 1.0 paradigm.

We suppose that there is a Tool Adaptor type called “MATLAB_PUBLISHER” which
supports the Matlab 1.0 paradigm and a Tool Adaptor type called “ECSL_RECEIVER”
which supports the ECSL 1.0 paradigm and there is a translator applicationwhich does
the tranglation between those paradigms.

1. Create anew MFC AppWizard(exe) project. The project type may be dialog based.

2. Add the following directories to the Additional include directories:
o {OTIF demo directory}/Include/Tool Adaptor
o {OTIF demo directory}/Include/UdmCORBA
o {UDM directory}/Include/Udm
o {3"“Party directory}/Include/STL

3. Add the following files to the Object/library modules:
o TA_MFC Supportlib

acelib

TAOQOL.lib

TAQO_PortableServer.lib

UdmBasellib

UdmCORBA. lib

UdmuUtil.lib

xerces-c_2.lib

O OO0 O0O0OO0Oo

Optional (it depends on which backend one wants to use in the project):
o UdmDOM.lib
o0 UdmGME.ib

Important: The name of the files is different in Debug compilation!
Important: Do not use precompiled headers!

4. Add the following directories to the Additional library path:
o {OTIF demo directory}/Lib/Tool Adaptor
o0 {OTIF demo directory}/Lib/UdmCORBA
o {OTIF demo directory}/Lib/tao
o {UDM directory}/Lib/Udm
o {3"Partydirectory}/Lib/xerces

24

OTIF Usage Guide

5. Put the (e.g. matlab and ecdl) paradigm .cpp, .h and .dtd files into the project directory
and add the .cpp to the source files.
Udm createsthesefilesfor you. [Appendix D.]

Note: Please pay attention to create these generated files as the Appendix D. says.
Without it your application will not work correctly.

6. At this point we are ready to put our source code in the project. Only the
{project_name}.cpp file will be modified.

Put the following includes after the stdafx.h include:

#i ncl ude " TA_MC_Support. h"
#i ncl ude "{paradi gm nane}. h"
#i ncl ude " UdnmCORBA. h"

/] These are only optional
#i ncl ude " UdnmDom h"
#i ncl ude " UdmGVE. h"

25

OTIF Usage Guide

Put the following code in the BOOL C{ proj ect _nanme} App: : I nitlnstance() method:

try {

// kkkkkhkhkhkhkkhkkhkhkhkkkx
/1 publish Document
// kkkkkkhkhkhkkhkkhkhkhkkx
/] define some vari abl es
CString nane, version, remarks, filenang;
| ong keepAl i ve;
/] show the publish dialog, this dialog is in the Tool Adaptor_DLL library
I/l the values fromthe dialog will be in the correspondi ng vari abl es
int result = showPublishD g(&ane, &ersion, & emarks, &keepAlive,

& i | enane) ;

// if the OK button was pushed we will send a docunent

if (result==1DX) {
[/l instantiate a tool adaptor, login with the specific type of
/] Tool Adaptor into the Backpl ane
ta = new nyTool Adapt or (" MATLAB_PUBLI SHER', _ argc, __argv);

/1 Get the datanetwork fromthe tool adapt or
/1l (here the natlab paradign
/1 the matl ab::diagramvariable is defined in the
/1 {paradi gmnane}.h (here, matlab. h)
UdmCORBA: : CORBADat aNet wor k *dn =

t a- >get Dat anet wor k(mat | ab: : di agran);

I/l open the file and | oad in the datanetwork
dn- >QpenExi sting((LPCSTR)fi |l enanme, "matlab");

/] publish this datanetwork to the server
dn- >publ i shDocunent ((LPCSTR) nane, (LPCSTR)versi on,
(LPCSTR remar ks, keepAlive);

/Il close the tool adaptor session
ta.l ogout ();

// *kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkk*

/1 fetch Docurent

// *kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkk*

/1l begin a new thread, this thread is inplenmented by the user
wor ki ng_t hread = Af xBegi nThr ead(nyWor ki ngThr ead, NULL);

/1 show the fetch dialog, this dialog is in the Tool Adaptor_DLL library
showret chDl g() ;

/1] cl ose the tool adaptor session
t a- >l ogout () ;

} catch (udmexception &) {

MessageBox(NULL, e.what (), "Error", MB_CK);
} catch (udntorba_exception &) {

MessageBox(NULL, e.what (), "Error", MB_CK);
}

The first part is needed for a Tool Adaptor with publish mechanism and the second
part for a ToolAdaptor with fetch mechanism.

26

OTIF Usage Guide

Also put the following codes to in the {project_name}.cpp file:

/1 Have to create your own tool adaptor to inplenent the notify abstract function
cl ass nmyTool Adaptor : public UdnmCORBA: : Tool Adapt or {
publi c:

nmyTool Adapt or (const char *type, int argc, char **argv)
Tool Adapt or (type, argc, argv) {};

[/ this function is called, when a datanetwork arrives
void notify(const char *par_nanme, const char *par_version, const char *name, const
char *version, const char *remarks, |ong docld, |ong keepAive) {

try {
CString fil enane;

[/l check if the filename is correct
while (filename. GetlLength()<5 || filenane.Right(4)!=".nga")
/] show the datanetwork arrived dialog, this dialog is in the
/] Tool Adaptor _DLL Ilibrary
/!l the values fromthe dialog will be in the correspondi ng
/] vari abl es
int result = showDat anet wor kArrivedD g(nanme, version, renarks,
keepAlive, &filenane);
if (result!=1DOK) return;
/1 check if the filenane is correct
if (filenanme. GetlLength()<5 || filenanme. R ght(4)!=".nga")
MessageBox(NULL, "Invalid filenanme! Filenanme nust end
with .nga", "Error", MB K);
}

/|l create a new dat anet work
dn- >Cr eat eNew((LPCTSTR) fi | enane, "ecsl", ecsl:: Root Fol der:: neta,
Udm : CHANGES_PERSI ST_ALWAYS) ;
/]l fetch the docunment and put in the datanetwork
dn- >f et chDocunent (docl d) ;
/] method in the Tool Adaptor DLL library. Add a string to the fetch
// dial og box status |istbox
addStri ngFet chDl g(" Dat anetwork fetched.");
/] save the datanetwork in the |ocal disk
dn- >SaveAs((LPCSTR) fi | enane) ;
addSt ri ngFet chDl g(" Dat anet work saved as " + filenane);
/1 close the datanetwork, we don’t need it anynore
dn- >0 oseNoUpdat e() ;
/] free up the datanetwork nmenory allocations
dn- >rel ease();
addStringFetchD g("");
addStri ngFet chDl g("Waiting for Datanetworks...");

} catch (udm exception &) {
addStri ngFet chDl g(e.what ());
} catch (udntorba_exception &) {
addStri ngFet chDl g(e.what ());
} catch (...) {
addStringFetchD g("Fatal Error!");
return;

}s
}s

myTool Adapt or *ta;

myTool Adaptor source code

27

OTIF Usage Guide

CW nThread *worki ng_t hread;

U NT nyWor ki ngThread(LPVO D pParam) {
try {

/] instantiate a tool adaptor, login with the specific type of
/1 Tool Adaptor into the Backpl ane
nyTool Adapt or *ta = new nyTool Adapt or ("ECSL_RECEI VER', __argc, __argv);

addSt ri ngFet chDl g(" Subscri be to ECSL paradi gmv1l.0");

/| subscribe to the paradi gm (nmetanodel) (here the ecsl paradignm,
/1 the ecsl::diagramvariable is defined in the {paradi gmnane}.h
/1l (here, ecsl.h)

t a- >subscri be(ecsl :: di agranm ;

addStri ngFetchD g("Waiting for Datanetworks...");

/1 run the tool adaptor, this is an infinite | oop to check the arrived
/1 documents
ta->run();

} catch (udm exception &) {
MessageBox(NULL, e.what(), "Error!", MB OK);
return true;

} catch (udntorba_excepti on &) {
MessageBox(NULL, e.what (), "Error", MB_(K);
return true;

}

return O;

myWor kingThread source code

The myTool Adaptor and myWorkingThread source code is only needed for a
Tool Adaptor with fetch mechanism.

If one writes a Tool Adaptor with publish mechanism, an instance of the

Tool Adaptor class aways has to be implemented, but its notify method should not be
implemented.

28

OTIF Usage Guide

10. How tocreatea simple Trandator application

Let’s create a simple Trandator application. A Trandator application does not need
MFC support so we only need the basic UdmCORBA API.

1. Create anew Win32 Console Application.

2. Add the following directories to the Additional include directories:
o {OTIF demo directory}/Include/UdmCORBA
o {UDM directory}/Include/Udm
o {3"Party directory}/Include/STL

3. Add the following files to the Object/library modules:
o acelib

TAOQOL.lib

TAQO_PortableServer.lib

UdmBasellib

UdmCORBA. lib

UdmuUtil.lib

xerces-c_2.lib

O O0OO0OO0O0Oo

Optional (it depends on which backend one wants to use in the project):
o UdmDOM.lib
o UdmGME.lib

Important: The name of the filesis different in Debug compilation!
Important: Do not use precompiled headers!

4. Add the following directories to the Additional library path:
o {OTIF demo directory}/Lib/UdmCORBA
o {OTIF demo directory}/Lib/tao
o {UDM directory}/Lib/Udm
o {3"Party directory}/Lib/xerces

5. Put the (e.g. matlab and ecdl) paradigm .cpp, .h and .dtd filesinto the project directory
and add the .cpp to the source files.
Udm createsthese filesfor you. [Appendix D.]
Note: Please pay attention to create these generated files as the Appendix D. says.
Without it your application will not work correctly.

6. Put the source code in Appendix C. into the {trandator_name}.cpp file.

29

OTIF Usage Guide

11. UdmCORBA exception handling modd

When one creates his own Tool Adaptor or Translator application, one can get error
messages from the UdmCORBA layer through exceptions.

One has to catch the udmcorba_exception and can get a code and a description of the
error.

Here is a simple usage example:

try {

} catch (udntorba_exception &) {
if (e.code()<11) {

cerr << endl << "CORBA exception: " << e.what() << endl;
} else if (e.code()<21) {
cerr << endl << "Paradi gmexception: " << e.what() << endl;

} else if (e.code()<41l) {

cerr << endl << "UdnCORBA exception: " << e.what() << endl;
} else if (e.code()<91)

cerr << endl << "Tool Adaptor exception: " << e.what() << endl;
}

Exception example

The possible exceptions with code and description parameters are in the following
list:

0 - Fatal exception: Fatal failure

1<->10 CORBA layer exceptions

1- Fatal exception: Caught a CORBA::Exception exception
2 - Failed to narrow root POA

3- Failed to narrow root POA manager

6 - Probably there is no active Backplane server.

7 - Fatal error.

11 <-> 20 Paradigm related exceptions

11 - Paradigm is not found

12 - A composition was not found in the paradigm

13 - An association was not found in the paradigm

14 - Paradigm exists

15 - Paradigm is locked

16 - Paradigm isin use

17 - Paradigm fileisinvalid

18 - Paradigm is unknown

19 - A class was not found in the paradigm. Maybe the paradigms are different.

30

OTIF Usage Guide

21 <->40 UdmCORBA layer related exceptions

21 - CORBAObject's setStringAttr method not implemented
22 - CORBAObject's setBooleanAttr method not implemented
23 - CORBAObject's setIntegerAttr method not implemented
24 - CORBAObject's setReal Attr method not implemented

25 - CORBAObject's setParent method not implemented

26 - CORBA Object's detach method not implemented

27 - CORBAObject's setChildren method not implemented

28 - CORBAObject's createChild method not i mplemented

29 - CORBA Object's setAssociation method not implemented
30- CORBAObject's __getdn method not implemented

31- Invalid session

32 - Invalid document

33 - fetchDocument error: Could not get the document

34 - Subscribe failed: Tool Adaptor is not found

35 - Failed to narrow to TranslatorFeed

36 - Failed to narrow to TranslatorSink

37 - publishDocument error: Could not publish the document. Thereis no active
Tool Adaptor session.

61 <-> 70 Manager related exceptions

61 - Could not connect to the Backplane server
62 - The password isincorrect
63 - Thereis an other active Manager

71<->80 Translator related exceptions

71 - Translator exists

72 - Trangdlator isin use

73 - Invalid translator

74 - Invalid translator arguments

75 - Translator get_fromDN function is ambiguous, because two or more paradigms are
available.

76 - Translator get_fromDN function is ambiguous, because two or more paradigms with
the same specified name are available.

81 <-> 90 Tooladaptor related exceptions

81 - Invalid Tool AdaptorType

82 - Tool Adaptor createDatanetwork function is ambiguous, because two or more
paradigms are available.

83 - Tool Adaptor has to create a datanetwork first.

85 - Tool Adaptor subscribe function is ambiguous, because two or more paradigms are
available.

86 - The %s v%s paradigm is not allowed for thistype of Tool Adaptor.

87 - Session of the Tool Adaptor could not be found.

88 - Tool Adaptor could not fetch a remote paradigm because datanetwork is NULL.

89 - CORBA layer was not properly initialized.

31

OTIF Usage Guide

Appendix A.

BackPlane _config.xml parameter file

<backpl ane name="TEST" version="1.0">

<options password="" um _paradi gm="uml .xm " onl yOneManager ="t rue"
transl at or _docunent s="300" |og_| evel ="3"/>

<startup>

<par adi gns>
<paradi gm i d="1" name="MATLAB" version="1.0" fil enanme="matl ab. xm "
| ocked="true"/>
<par adi gm i d="2" nanme="ECSL" version="1.0" fil enane="ecsl.xm"
| ocked="true"/>
</ par adi gns>

<t ransl at or s>
<translator id="2" name="Matl| ab2ECSL" version="1.0"
command="transl| at or _mat | ab2ecsl . exe" i nput Par adi gns="2"
out put Par adi gnms="1"/>
</transl at or s>

<t ool adapt or s>
<t ool adaptor id="1" type="ECSL_RECEI VER" i nput Paradi gns="1"
out put Par adi gns=""/ >
<t ool adapt or id="3" type="MATLAB_PUBLI SHER" i nput Par adi gns=""
out put Par adi gns="2"/ >
</ t ool adapt or s>

<wor kf | ow>
<link source="2" destination="1" out put Paradi gn="1"/>
<l ink source="3" destination="2" outputParadi gm="2"/>
</ wor kf | ow>
</startup>

</ backpl ane>

The xml type file has two parts.

In the first part there are the
- name, version parameter of the Backplane server. (<backplane> node)
password parameter, which is used when a Manager application want to connect
to a running Backplane server. (<option> node)

uml_paradigm parameter, which identifies the xml file of the uml paradigm.
(<option> node)

32

OTIF Usage Guide

onlyOneManager parameter, which specifies that only one or multiple Manager
application can connect to the Backplane at one time. (<option> node)
trandlator_documents parameter, which specifies the keepAlive value for the
documents published by a Translator application to the Backplane server.
(<option> node)

log_level parameter, which specifies how many information will be written out in
the BackPlane.log file. This value is used for debug purposes.
0 value disables to write out any debug information.
1 value writes out only error messages.
3 value writes out information about the Backplane and the various
trandators.
5 value writes out more detailed information about the Backplane and the
various translators.

In the second part (<startup> node) there are the defined paradigms, trandlator
applications, tooladaptor types and the workflow links for the Backplane server. These
components are registered, when the Backplane server starts.

aparadigm with the
0 hame, version parameter (<paradigm> node)
o filename parameter, which identify an xml paradigm file in the paradigms
directory (<paradigm> node)
0 id parameter, which identifies the paradigm (<paradigm> node)

atrangdator with the
0 hame, version parameter (<translator> node)
0 inputParadigms, outputParadigms parameters, which identify previously
defined paradigms (<trandlator> node)
o0 command parameter, which identify atrandator application program in
the trandators directory. (<tranglator> node)
0 id parameter, which identifies the trandator (<translator> node)

a tooladaptor with the
0 type parameter (<tooladaptor> node)
0 inputParadigms, outputParadigms parameters, which identify previously
defined paradigms (<tool adaptor> node)
0 id parameter, which identifies the tooladaptor (<tooladaptor> node)

alink with the
0 source, destination parameters, which identify previously defined
tranglators or tooladaptors (<link> node)
0 outputParadigm parameter, which identify a previously defined paradigm
(<link> node)

33

OTIF Usage Guide

Appendix B.
Simple ToolAdaptor application example

1. Example of a*document publish” mechanism.

I/l test.h is created with the udm application fromthe test paradi gm
#i ncl ude "test.h"

#i ncl ude " UdnmDom h"

#i ncl ude " UdnmCORBA. h"

usi ng nanmespace test;

// Have to create your own tool adaptor to i nplenment the notify abstract function
cl ass nyTool Adaptor : public UdmCORBA: : Tool Adapt or {
publi c:

nmyTool Adapt or (const char *type, int argc, char **argv)
Tool Adapt or (type, argc, argv) {};

void notify(const char *par_nane, const char *par_version, const char *nane,
const char *version, const char *remarks, |ong docld, |ong keepAlive) {};

b

int main(int argc, char* argv[]) {
if (argc!=4) {
cout << "Usage: Push_TEST <tool adaptor type> <fil enane.xm > <keepAlive in
second>" << endl ;
exi t(1);
}

try {
/] instantiate a tooladaptor, login with the specific type of

/1 Tool Adaptor into the Backpl ane
nyTool Adaptor ta(argv[1], argc, argv);

/I Cet the datanetwork fromthe tool adaptor (here the test paradi gm
I/l the diagramvariable is defined in the

/'l {paradigmnane}.h (here, test.h)

UdnCORBA: : CORBADat aNet wor k *dn = t a. get Dat anet wor k(di agram " TEST",

"1.0");
I/l open the file and | oad in the datanetwor k
dn- >OpenExi sting(argv[2], "test");
/1 publish this datanetwork to the server
dn- >publ i shDocunent ("test _doc", "1.0", "test docunent", atol (argv[3]));
cout << "DataNetwork pushed." << endl;
} catch (udm exception &) {
cerr << e.what() << endl;
} catch (udntorba_exception &) {
if (e.code()<11) {
cerr << endl << "CORBA exception: " << e.what() << endl;
} else if (e.code()<21) {
cerr << endl << "Paradigmexception: " << e.what() << endl;
} else if (e.code()<41l) {
cerr << endl << "UdnCORBA exception: " << e.what() << endl;
} else if (e.code()<91) {
cerr << endl << "Tool Adaptor exception: " << e.what() << endl;
}
}
return O;
}

OTIF Usage Guide

2. Example of a“document fetch” mechanism.

/] test.h is created with the udmapplication fromthe test paradi gm
#i ncl ude "test.h"

#i ncl ude " UdnmDom h"

#i ncl ude " UdmCORBA. h"

usi ng nanmespace test;

/] Have to create your own tool adaptor to inplenent the notify abstract function
cl ass nyTool Adaptor : public UdmCORBA: : Tool Adapt or {
publi c:

nmyTool Adapt or (const char *type, int argc, char **argv)
Tool Adapt or (type, argc, argv) {};

[/ this function is called, when a datanetwork arrives
void notify(const char *par_name, const char *par_version, const char *name, const
char *version, const char *remarks, |ong docld, |ong keepAlive) {

/] create a new datanet work

dn->CreateNew(" __pul | _test.xm", "test", Root::neta,
Udm : CHANGES_PERSI ST_ALWAYS) ;

/Il fetch the docurment and put in the datanetwork

dn- >f et chDocunent (docl d) ;

/] save the datanetwork in the |ocal disk

dn- >SaveAs(" __pull _test.xm");

I/ close the datanetwork, we don't need it anynore

dn- > oseNoUpdat e() ;

/Il free up the datanetwork nmenory all ocations

dn- >rel ease();

B
IE
int min(int argc, char* argv[]) {
if (argc!=2) {
cout << "Usage: Pull _Test <tool adaptor type>" << endl;
exit(1);
}
try {

// instantiate a tool adaptor, login with the specific type of

/'l Tool Adaptor into the Backpl ane

nyTool Adaptor ta(argv[1], argc, argv);

/] subscribe to the paradi gm (metanodel) (here the test paradigm,

/1 the diagramvariable is defined in the {paradi gmnane}.h

[/ (here, test.h)

ta. subscri be(di agram "TEST", "1.0");

/1 run the tool adaptor, this is an infinite | oop to check the arrived
/1 documents

ta.run();

} catch (udm exception &) {
cerr << e.what() << endl;
} catch (udntorba_exception &) {
if (e.code()<11) {

cerr << endl << "CORBA exception: " << e.what() << endl;
} else if (e.code()<21) {
cerr << endl << "Paradigmexception: " << e.what() << endl;
} else if (e.code()<41) {
cerr << endl << "UInCORBA exception: " << e.what() << endl;
} else if (e.code()<91) {
cerr << endl << "Tool Adaptor exception: " << e.what() << endl;
}
}
return O;

35

OTIF Usage Guide

Appendix C.

Simple Trandator application example

/] test.h is created with the udm application fromthe test paradigm
#i ncl ude "test.h"

#i ncl ude " UdnmDom h"

#i ncl ude " UdmCORBA. h"

#i ncl ude " UdmCORBA_Logger . h"

Logger | ogger = Logger("Transl ator_Test");

usi ng namespace test;

class nyTranslator : public UdnCORBA: : Transl ator {
publi c:

nmyTransl at or (const Udm : UdnDi agr am &f r om net ai nf o, const char *from nane, const
char *fromversion, const Un:: O ass & romrootclass, const Udm : UdnDi agram & o_net ai nf o,
const char *to_nane, const char *to_version, const Un::d ass & o_rootclass, int argc,
char **argv, Logger *Iogger)
Transl ator (from netai nfo, fromnanme, fromversion, fromrootclass, to_netainfo,
to_nane, to_version, to_rootclass, argc, argv, |ogger) {};

[/ this function is called, when a datanetwork arrives
void notify(const char *nane, const char *version, const char *remarks, const
unsi gned | ong numO Docs) {

/1 Udm speci fic functions
Root fromroot = Root:: Cast (fronDN >CGet Root Chj ect());
Root to_root = Root:: Cast(toDN->Cet Root Object());
to_root.count() = fromroot.count();
set<A> as = fromroot.A kind_children();
for(set<A>::iterator i=as.begin(); i!=as.end(); i++) {
Aa=A:Ceate(to_root);
string nane = (*i).nane();
nane. append(" _copy");
a.nane() = nane;

}

/1 publish the datanetwork which is in the toDN Transl ator variabl e
publ i sh(nanme, version, "After the TEST1.0->TEST1.1 translation");

}
B
int min(int argc, char* argv[]) {
try {
/l instantiate a translator, the test::diagramvariable is defined in the
/1 {paradigmnane}.h (here, test.h), Root::nmeta is the rootobject’s neta
// defined in the {paradi gmnane}.h (here, test.h)
nyTransl ator tr(diagram "TEST*, "1.0", Root::nmneta,
di agram "TEST", "1.1", Root::neta,
argc, argv, & ogger);
// run the translator, this is an infinite loop to check the arrived
/'l docunents and call the notify nethod
tr.run();
} catch (udm exception &) {
cout << e.what() << endl;
| ogger.log(1, "Error", e.what());
} catch (udntorba_exception &) {
cout << e.what() << endl;
| ogger.log(1l, "Error", e.what());
} catch (...) {
cerr << "Fatal exception" << endl;
| ogger.log(1, "Error", "Fatal exception");
return O;
}

36

OTIF Usage Guide

Appendix D.
How to create the.cpp, .dtd and .h files by the Udm.exe

Udm.exe creates the .h, .cpp, .dtd files of the paradigm you want to use in your
project. However, if you want to use this files in one of your OTIF project, you have to
creates these files with the —c option.

For example:
Udm exe paradigmxm -d {directory of the corresponding dtd

files} -c

Udm application with the —c option creates the CORBA specific remote paradigm
(metamode) files.

Note: If you do not specify the —c switch, Udm.exe will create the local version of
the paradigm and it should not be used in an OTIF application. Please use always the —
switch if you implement an application based on the OTIF framework.

37

OTIF Usage Guide

Appendix E.

3.

Troubleshooting

| installed one of the extension packages and started the OTIF framework |
could not useit because there are no ToolAdaptor typesand Trandators
registered.

The registration process of the Trangdlators and Tool Adaptor typesis
changed from the 1.2.0 version. Y ou have open the workflow file of the extension
package in GME and interpret it. While the interpretation process it will register
all the Trandators, Tool Adaptor types and connections between them in the
Backplane. Every time you change something in the configuration you have to
interpret it.

Solution: Open the workflow file of the extension package in GME and interpret
it while the OTIF framework is running.

When | try to fetch or publish a GME document (.mgafile), | get an error
message that the paradigm isnot registered.

Probably you did not register the corresponding mga layer paradigm (for
example the ecd .xmp paradigm of the ECSL extension package under the
Documents directory).

Solution: Register the paradigm of your document in GME2000 (for example the
ecd.xmp file of the ECSL extension package under the Documents directory).

When | try to publish the sample“ mdl” type document with

GenericToolAdaptor application, it said “ Cannot deduce Udm backend type
from mdl_sample.mdl. Available backends: DOM GME MEM”

The GenericTool Adaptor application can only publish “xml”, “mem” and
“mga’ type documents. DOM backend supports “xml” type GME backend
supports “mga’ type and MEM backend supports “mem” type documents. Right
now only these backends are available in UDM.

Solution: Publish the “mdI” type documents with Tool Adaptor_ MDL application.

38

