
Automated Model Compiler (AMC) based on Design
Space Exploration Tool (DESERT)
Sandeep Neema (sandeep.neema@vanderbilt.edu)

This document provides a short summary on the scope and usage of the AMC tool-chain
provided as part of the OTIF distribution. We give a short overview of the AMC
problem, the DESERT tool, and then a synopsis of the AMC tool-chain. For additional
details on the AMC or the DESERT tool, a list of references is included.

Automated Model Compiler
An embedded automotive systems engineer is often faced with the challenge of
composing models of vehicle system assemblies, from a set of sub-models for the
purpose of simulation, verification, or synthesis. A typical embedded automotive
example has 75-100 model components, each of which has 3-30 alternatives, and ~2000
signal inter-connects. In addition to the sheer scale of the problem, the system engineer
also has to ensure the compatibility of inter-connected components and meet the overall
design and performance requirements while performing the composition. Motivated by
this enormous complexity, Ford engineers defined a challenge problem for an Automated
Model Compiler in a paper published in the Proceedings of the Embedded Software
Conference, 2001 [1] – “A model compiler is a tool that automatically composes a model
from a set of sub-models and an architectural description of the arrangement of sub-
models, ensuring full-connectivity of all control flow and data flow signals between sub-
models, proper sequencing of sub-models, and compatibility of sub-models”.

Design Space Exploration Tool
DESERT is a meta-programmable tool for navigation and pruning of large design spaces
using constraints. It provides a generic structured representation of design-spaces based
on the concept of alternatives and parameters. With this capability one can represent a
rich variety of problem domains such as product- line architectures, hardware-software
co-design, and automated model compilation, to name a few. DESERT has an expressive
constraint language based on a subset of OCL, which allows expressing compositional,
resources, and performance (time, energy, size, weight, and cost) constraints. DESERT
incorporates a powerful and highly scalable symbolic constraint solver based on Ordered
Binary Decision Diagrams. The input and output interfaces of DESERT are XML based,
and are accompanied with a programmatic API which renders the integration of DESERT
into tool-chains convenient. For additiona l details on DESERT refer to [2] and [3].

AMC Tool Chain
Leveraging the strength of DESERT, we have developed the AMC tool chain in response
to the challenge problem referred above. Figure 1 shows the key components and the
work flow in the AMC tool-chain. The key components of this tool-chain are as follows:

IP

DESERT
(DesertTool.exe)

GME

Comp.
Model

Database
(mdl files)

Comp.
Data

Dictionary
(m files)

DB2DSME
(DB2DSME.exe)

Matlab/
Simulink

Abstract
Design Space

Model
(.mga)

DSME à
DESERT

DESERT
Input

(.xml)

DESERT
Output
(.xml)

Concrete
Build
(.xml)

Matlab
Build
Script
(.m)

SL à
M

U
D
M

U
D
M

U
D
M

U
D
M

(DSME2DESERT.exe)

Abstract
Architecture

Model
(.mga)

(DSME2SL.exe)

(SL2M.exe)

DSME à
SL

U
D
M

U
D
M

1

2

3
3

4

4

IP

DESERT
(DesertTool.exe)

GME

Comp.
Model

Database
(mdl files)

Comp.
Data

Dictionary
(m files)

DB2DSME
(DB2DSME.exe)

Matlab/
Simulink

Abstract
Design Space

Model
(.mga)

DSME à
DESERT

DESERT
Input

(.xml)

DESERT
Output
(.xml)

Concrete
Build
(.xml)

Matlab
Build
Script
(.m)

SL à
M

U
D
M

U
D
M

U
D
M

U
D
M

(DSME2DESERT.exe)

Abstract
Architecture

Model
(.mga)

(DSME2SL.exe)

(SL2M.exe)

DSME à
SL

U
D
M

U
D
MIP

DESERT
(DesertTool.exe)

GME

Comp.
Model

Database
(mdl files)

Comp.
Data

Dictionary
(m files)

DB2DSME
(DB2DSME.exe)

Matlab/
Simulink

Abstract
Design Space

Model
(.mga)

DSME à
DESERT

DESERT
Input

(.xml)

DESERT
Output
(.xml)

Concrete
Build
(.xml)

Matlab
Build
Script
(.m)

SL à
M

U
D
M

U
D
M

SL à
M

U
D
M

U
D
M

U
D
M

U
D
M

(DSME2DESERT.exe)

Abstract
Architecture

Model
(.mga)

(DSME2SL.exe)

(SL2M.exe)

DSME à
SL

U
D
M

U
D
M

DSME à
SL

U
D
M

U
D
M

1

2

3
3

4

4

Figure 1: AMC Tool Chain

1. Matlab/Simulink and Component Repository: The repository contains

simulation model for various automotive subsystems. The models are stored
in .mdl (Model Definition Language) files, and there is an associated
definition file, that defines the input and output signals, a number of
performance parameter (e.g. CPU usage, RAM/ROM usage) and
characterization information (green vs. fun-to-drive vehicle, etc.) for the
Simulink/Stateflow models.

2. Design-Space Modeling Environment (GME): The challenge problem
definition suggested the introduction of a high- level modeling language for
the specification of target architectures. This language uses the abstracted
components at its leaf nodes so as to allow modelers focusing on the
appropriate level of abstraction. Therefore, we defined an SF-like design
language with hierarchy and alternatives and instantiated it in our meta-
programmable Graphical Model Editor (GME). Design space models capture
the hierarchical composition of vehicle systems and capture design
alternatives for subsystems. A primitive (leaf node) in this language represents
a simulation model in the Matlab/Simulink Component Repository, and is
linked to the simulation model through attributes that store model name,
version number, and file name. There are additional placeholder attributes for
performance, and characterization parameters that need not be filled by the
user. The translator in the Component Abstraction tool parses the parameter
and I/O definitions and populates the models with this information. The user
can model design specifications (e.g. CPU_usage < 70%, RAM < 20Kbytes)

as constraints in the design space models. Consistency constraints (e.g.
connected I/O should have matching data types) are automatically introduced
in the models. The Design-Space Modeling Environment supports the
specification of structural, and component compatibility constraints in OCL.

3. Design-Space Abstraction (DSME2DESERT and DB2DSME): DESERT uses
a domain- independent meta-model, which separates its internal algorithms
from domain-specific constructs. The Design-Space Abstraction component of
the AMC tool-chain provides two-way model translation between the Design-
Space Models and the DESERT’s abstract design-space models. The two-way
translation enables that acceptable point designs selected from the pruned
design space by DESERT can be presented in the Design-Space Modeling
Environment and can be translated further automatically for the
Matlab/Simulink environment for detailed simulation studies.

4. De-abstraction and Assembly (DSME2SL and SL2M): This component of the
AMC tool-chain elaborates the abstract high- level architectural model with
Simulink model details and constructs the assembly model.

References
[1] Butts K., et. al. “Usage Scenarios for an Automated Model Compiler,” EMSOFT

2001
[2] Neema S., et. al. “Constraint-Based Design-Space Exploration and Model Synthesis,”

EMSOFT 2003
[3] Neema, S., “Design Space Representation and Management for Embedded Systems

Synthesis,” Technical Report, ISIS-01-203, February 2001.

