Debugging UDM

How to use a symbol server with the Visual Studio .NET debugger

It can be done by setting the _NT_SYMBOL_PATH global environment variable:

In Control Panel, double-click System

On the Advanced tab, click Environment Variables

Under System Variables, click New, and then add a variable as _NT_SYMBOL_PATH
Set the value of the variable to the UDM symbol server path:

pwnN e

symsrv*symsrv.dll*c:\localcache* http://symbols.isis.vanderbilt.edu/symbols/

Note: the c:\localcache folder is used to cache the downloaded symbols.

Sharing the symbol files on a network for group development

Set the _NT_SYMBOL_PATH variable in each developer workstation to the following value:

symsrv*symsrv.dll*\\localserver\share*http://symbols.isis.vanderbilt.edu/symbols/

where \\localserver\share is a readable and writeable local network share.

Note: SymSrv always looks for the symbol file in the leftmost symbol store. If the right symbol file
found in \\localserver\share it is used. If it is not there, SymSrv looks in the symbol store
immediately to the right (the UDM symbol server in our case). If the file is there, it is copied to the
left store and opened from there.

Get the UDM source code

The UDM source code is available at http://repo.isis.vanderbilt.edu/downloads?tool=UDM

Find the source code that corresponds to your UDM version, download it and unpack it to a local
folder.

While debugging, step through your code until you step into the UDM code. At this point a dialog
will pop up asking where the source files are and you can attach the matching files to debug process.

Attach to a running process for a command-line UDM interpreter

On the Debug menu, select Attach to Process.

In the Attach to Process dialog box, find your process in the Available Processes list (select
the Show processes from all users check box if the process is running under a different user
account or select the Show processes in all sessions check box if you are connected through

Remote Desktop Connection)

3. Click Attach.

Attach to Process ilil
Transpart: IDEFauIt j
Cualifier; I MYHOST j Browse, .. |

~Transpart Information

The default transport lets wou select processes on this computer or a remote computer running the Microsoft Yisual Studio Remote
Debugoing Monitar (MSYSMON,ERE),

Attach to:

I Aukomatic: Mative code

Select. .. |

— fAvailable Processes

TOTALCMD.EXE

VBUiTray.exe .

Mrnemy Feouo aves

1040

||_ Show processes from all users

Total Cormmander &.01 - MOT REGISTERED w36
A prt LIDR Eronkd Bl i as. ..

56

[show processes in all sessions ‘

MYHOSTuse

Process | 1D | Title | Tvpe | Lset Marme | Session |:|
explorer . exe 1744 Frograrm Manager)] MYHOST \user 1]
GME. exe 33585 GME 86 MYHO ST user o
GME.exe 3244 Object Inspector w86 MYHOSThuser]
mspdbsry exe 1885 =86 MYHOSThuser]
notepad++.exe 1916 FAUDM\IFY refresh_Typelibrary.cmd - Mo... x86 MYHOSThuser]

1640 MYHOST user 1]

1812 MYHOSTuser a
VCDDaemon . exe 1544)] MYHOSTiuser 1]
widbsmagr.exe 1896 w86 MYHOST \user]
wscntfy exe 81z Btil:) MYHOST | user] —
woauclk, exe 3132 %86 MYHOST \user] LI
e l-T-] -1} BAL LT n

Refresh |

Aktach I

Cancel |

Note: if there is no time to attach to the process you could place a cin.ignore(); or cin.get(); in your

code to wait for a user input.

Start a debug session for a command-line UDM interpreter

In most cases there is no time to select the process because it terminates the execution very fast.

In this case we can use an other method to debug a command-line UDM interpreter:

P wnNpe

Open Visual Studio
Choose File menu Open->Project/Solution
Locate and select your executable program you want to debug and open it.

Right click on [YourProgram].exe ,project” and choose Properties.

5. In Configuration Properties->Debugging, Command Arguments can be used to specify the
command line arguments.

#. test_refports - Microsoft Visual Studio

File Edit ‘“iew Project Debug Tools Test ‘Window Help

..gn ~rE-FE A EBRER -6 -8-B b |Release -||Win32 -|| # UdmGme
Solution Explorer - test_r Start Page
'_; Salution 'test_refports' {1 project) ;’ 4 Micr?snf't‘ .
é’ﬂ test_refports.exe - 4 V I St d .
& VISUal STUQIO 2008

Configuration: IActive(Debug) j Plakfirmi: IN,I'F\ j Configuration Manager. .. |
= Configuration Properties Debugger ta launch:
.. Debugging 0 ebugger

Carmmand ChprluDn erunk Build)win32i WM Releaseitest_rel
Command Arguments [
Warking Directary CiipriiuDnitrunk Bulld Win32\ vC I Release),
Attach Mo
Debugger Type Auta
Environment
Merge Environment fes
SGL Debugaing Mo

Find Symbol Resul Command
The debug command bo execute,

(414 I Cancel Apply

test_refports Property Pages B ﬂﬂ

Al

' LIp
ks,

pre
saft
Read

6. Choose Debug menu, New breakpoint -> Break at function and type a function name.

7. Click F5 to start debugging the program.

8. The program execution will break at the specified function and you can step through the
UDM code.

Note: if we have a configured project that builds the interpreter we only have to specify the
command line arguments and to create a breakpoint. After that we are ready to debug our
interpreter.

Start a debug session for a live GME-based UDM interpreter

Debug your own project that depends on UDM, step through your code until you reach the UDM
code. If the symbol server is set and the matching UDM code is available for use, you can debug the
UDM interpreter.

Attach to a running process for a live GME-based UDM interpreter
Please refer to ,Attach to a running process for a command-line UDM interpreter” section.

Identifing particular UDM objects and get access to attribute data
Locate the object implementation, add to the watch window and call the toString() method.

wvoid StaticObject::sethssociation|

const ::Uml::issociationRole &z B
const vector<dhjectImpl®> &nve El @ meta {meta={...} meta_max={...} meta_min={...} ...} |
int mode, @ Uml:GenericRale dmeta={...} meta_isMavigable={...} meta_name={...} +
zonst bool direct] Bl @ Udm::Object {impl=0x00a30278 }
i @ __wfptr Ox131fbFFE const Uml:: AssociationRole: ;" wFtable'
g @ impl 0x003a0275 {mydn—DxDDaQ?FSS deleted false st and |—[D]() 3

QRS @ [1idmatatic:

!HHHH!HHIII

//check the role name -*‘ T @ viplr
(4 meta_target dmeka={. |)
(&# meta_parent Jmeta=y, | Sy EBAREE
i Copy Yalue
Cout <« ' o=sss=s==s=========serlssociation() invokedssss=======

Add watch |

- ®x]aalstax Hexaderinal Disply |

The toString() method provides useful informations about the current object.

Watch 1

| | Marne | Walue Type
S FRHIOCH(Udm: Object® 02 Uml: s GenericRole™®) Brmeka)). impl) gy "FefPortf <empty string=/b_en 3, - skd::basic

Package up stack traces and program data to submit a bug report for UDM

Just-In-Time debugging launches Visual Studio automatically when an exception or crash occurs in an
application running outside Visual Studio. This enables you to test your application when Visual
Studio is not running and begin debugging with Visual Studio when a problem occurs.

When a crash or exception occurs, you will see a dialog box appears with a message that looks
something like this:

An unhandled exception occurred in yourprogram.exe[line number]

Choose the New instace of Visual Studio from the Possible Debuggers list and click Ok.

¥isual Studio Just-In-Time Debugger x|

an unhandled win3z2 exception occurred inudm.exe [2116].

—Possible Debuggers:

[~ set the currently selected debugger as the defaulk,

[T Manually choose the debugging engines.

Do o wank ko debug using the selected debugger?

This will start a new debugging session in Visual Studio and you will see a new dialog box with the
error description.

Click on the Break button to break the program’s execution at the current point.
In Debug menu choose Save Dump as and save the minidump file.

Send the minidump file to analysis.

