Debugging UDM

How to use a symbol server with the Visual Studio .NET debugger

It can be done by setting the _NT_SYMBOL_PATH  global environment variable:
1. In Control Panel, double-click System
2. On the Advanced tab, click Environment Variables
3. Under System Variables, click New, and then add a variable as _NT_SYMBOL_PATH
4. Set the value of the variable to the UDM symbol server path: symsrv*symsrv.dll*c:\localcache* http://symbols.isis.vanderbilt.edu/symbols/
Note:  the c:\localcache folder is used to cache the downloaded symbols.
Sharing the symbol files on a network for group development

Set the _NT_SYMBOL_PATH  variable in each developer workstation to the following value:
symsrv*symsrv.dll*\\localserver\share*http://symbols.isis.vanderbilt.edu/symbols/
where \\localserver\share   is a readable and writeable local network share.
Note:  SymSrv always looks for the symbol file in the leftmost symbol store. If the right symbol file found in \\localserver\share  it is used. If it is not there, SymSrv looks in the symbol store immediately to the right (the UDM symbol server in our case). If the file is there, it is copied to the left store and opened from there.

Get the UDM source code

The UDM source code is available at http://repo.isis.vanderbilt.edu/downloads?tool=UDM
Find the source code that corresponds to your UDM version, download it and unpack it to a local folder.
While debugging,  step through your code until you step into the UDM code.  At this point a dialog will pop up asking where the source files are and you can attach the matching files to debug process. 

Attach to a running process for a command-line UDM interpreter

1. On the Debug menu, select Attach to Process.
2. In the Attach to Process dialog box, find your process in the Available Processes list (select the Show processes from all users check box if the process is running under a different user account or select the Show processes in all sessions check box if you are connected through Remote Desktop Connection)
3. Click Attach.
[image: C:\temp\pb\attach_proc3.bmp]

Note: if there is no time to attach to the process you could place a cin.ignore(); or cin.get();  in your code to wait for a user input. 

Start a debug session for a command-line UDM	interpreter	

In most cases there is no time to select the process because it terminates the execution very fast.
In this case we can use an other method to debug a command-line UDM interpreter:
1. Open Visual Studio
2. Choose File menu Open->Project/Solution
3. Locate and select your executable program you want to debug and open it. 
4. Right click on [YourProgram].exe „project” and choose Properties.
5. In Configuration Properties->Debugging, Command Arguments can be used to specify the command line arguments. [image: C:\temp\pb\debug1.bmp]
6. Choose Debug menu, New breakpoint -> Break at function and type a function name.
7. Click F5 to start debugging the program. 
8. The program execution will break at the specified function and  you can step through the UDM code.
Note:  if we have a configured project that builds the interpreter we only have to specify the command line arguments and to create a breakpoint. After that we are ready to debug our interpreter.

Start a debug session for a live GME-based UDM interpreter

Debug your own project that depends on UDM,  step through your code until you reach the UDM code. If the symbol server is set and the matching UDM code is available for use, you can debug the UDM interpreter.  

Attach to a running process for a live GME-based UDM interpreter
Please refer to „Attach to a running process for a command-line UDM interpreter” section.

Identifing particular UDM objects and get access to attribute data
Locate the object implementation, add to the watch window and call the toString() method. 
[image: C:\temp\pb\addwatch.png]
The toString() method provides useful  informations about the current object. 
[image: C:\temp\pb\toString.bmp]

Package up stack traces and program data to submit a bug report for UDM

Just-In-Time debugging launches Visual Studio automatically when an exception or crash occurs in an application running outside Visual Studio. This enables you to test your application when Visual Studio is not running and begin debugging with Visual Studio when a problem occurs. 
When a crash or exception occurs, you will see a dialog box appears with a message that looks something like this:
An unhandled exception occurred in yourprogram.exe[line number]
Choose the New instace of Visual Studio from the Possible Debuggers  list and click Ok. [image: C:\temp\pb\newinstance.bmp]
This will start a new debugging session in Visual Studio and you will see a new dialog box with the error description. 
Click on the Break button to break the program’s execution at the current point. 
In Debug menu choose Save Dump as  and save the minidump file. 
Send the minidump file to analysis.
image2.png
test_refports - Microsoft Visual Studio
Fle E Vew Poect Dehp Took Test Window Hep
T T IFEY YE R RN 7

Start Page

2 UdmGe

52 Solution est_refports' (1 project) Microsoft*
et seipotse Visual Studio 2008

test_refports Property Pages

21|

[ re ) = puttorns [ T
t
'S Configuration Prapertes Debugget to launch:  uee
Debung L
e
&
Command CHiprilUDMitrunk|Build\win32ivCSiReleaseitest_rel Read
Conmnd Argunents
Working Directory CHiprilUDMitrunk|Buildywin32ivCoiReleasel,
sitach o
Debugger Type o
Envrormert
ergn Envronment e
50t bebuggng o
o =
G
Mot mEmmteeess
== [ =n





image3.png
const ::Unl

int mode,
const bool direct)

//check the role name

e
cout << " =

sethssociation|
1associacionRole chEtd,
const vector<OpjectIuple> snvest,

T80 uni::GenericRole
B 0 Udm:Object

9 meta Foroet
% meta parent

=sethssociation(] invokeds

B0 meta [ {meta={...} meta_max={...} meka_mi

_viptr Dx131fbif8 const U AssociationRol:
0x00aa0278 {imy:

bk

{mota="...} mets_isNavigsble="...} meta_name={...} }
{impl=0:00320278

" yftable

)i'

Copy Expression

Copy Value

Edt aue

Hexadecimal Display




image4.png
Name value Type
1~ MUz Objoct (& *Uim::GenericRole)(emeta))))mp)) IR "RefPort/ <empty string>fb_en . ~ stdbasi




image5.png
visual Studio Just-In-Time Debugger

an unhandled win32 exception occurred n udm.exe [2116].

Possible Debuggers:

I~ et the currently selected debugger s the default

T~ Manually choose the debugging engines,

0 you want to debug using the selected debugger?





image1.png
[Attach to Process

Transport; efault

Qualfier: WHHOST

[~ Transport Information
The defaul transport st you select processes on tis computer or  remote computer runring the Microsoft Visual Studio Remote
Debugging Montor (MSVSMON.EXE).

Attach to Atomatic: Native cods.

|- Auslble Processes

Process 3 T Type User Name Session |~
explorer exe 1744 Program Hanager 36 MYHOSTiuser 0
GHE.exe 388 GHE a5 MYHOSTiuser 0
GHEexe 3244 Object Inspector a6 MYHOST user 0
mspdbsrv.exe 188 a6 MYHOST user 0
notepadtt.exe 1916 FUDMIIFV|refresh_Typelbrary.cmd -No... <86 MYHOST user 0
TOTALCMD EXE o
VBodTray.eve 1512 36 MYHOSTiuser o
VCDDaemanexe 1844 a6 MYHOST user 0
wadbsmr.exe 189 a6 MYHOST user 0
wscnify.exe 2812 a5 MYHOSTiuser 0 -
wauck exe a1 a6 MYHOSTiuser 0
T show pracesses from all users I show pracesses in all sessions Refresh





