The UDM Interpreter Generator for Generic Modeling
Environment
Tihamér Levendovszky

05/14/2002
(updated 08/30/2004)

The UDM Interpreter Generator for Generic Modeling Environment

0. Table of Contents

0. TABLE OF CONTENTS ...oiiiiiiiiitiiiiee ettt e ettt e e e e e s st e e e e e e ennaneeeeeeaanns 2

I N @ 151 L @ I 1 PP 3

2. GENERATING THE META ittt e e s e e e e e e st eeeaeea e 4
2.1 META CREATION PROCESSOVERVIEW ...ccutuuiaeiiitiiaaaaeeetiiaaeeaeesnnnaaaeeesssnaaaaeeessnnnnns 4

3. USING THE GENERATOR......otiiiiiiiiiiiee ettt ee e e e e 4

3.1 META LOADING AND CACHING ...ceuuteiiitiieeetineeeettaesetueesssnneesssaneessssnaesssnaesssnneaessneaeens 4
3.1.1 DYnamiC VS. SatiC MELAccceeeeieeeiecieseee et 5
G I @ o1 00772 (o] o TSR 5
3.2CONFIGURINGUDM DEVELOPMENTENVIRONMENT AND META PATHS.....uuvuuiannen. 5
3.2.1 UDM ENVIronmMent SEtiNGS.......coveereriireeiieseesiee e see e sie s s ee e s s sees 5
T V1= = W] o S 5
3.3 COMPONENT SETTINGS .. ttttutetettneetetueesetueeeesaeeeatseeeataeaestneeeasn e eesnaaeesnnaeeesneeeennnns 6

5. THE GENERATED CODEoiiiiiiiiiii e 6
6. REFERENGCES

The UDM Interpreter Generator for Generic Modeling Environment

1. Introduction

The GME interpretation process needs to access to MGA objeatsreted model. An
approach can be to use tBeilder Object Network [1] shipped with GME to traverse
models, change MGA objects in the models and generate the desired Sutplatr to
BON, UDM [2] offers facilities for accessing MGA via UDBME backend, and makes
the current project accessible by raw COM interpreter exterfTo ease the development
a generator has been developed which creates a Visual Studio @6t pvah the
necessary capabilities to provide a programming environment fog u$DM. The
objective of this document is to describe the basic steps toaMdi@M-based interpreter
for GME assuming medium-level familiarity with UDM programmg (it involves STL)
and GME.

UML Meta [¢«———Defines

Defines

v
UDM API Level |« Generate— GME UML Model GME Meta
UDM Object
Network I_Jevel < Offers data— GMLEe\I\//IecI)deI «———Defines

Figure 1. Correspondence between GME and UDM

Figure 1 shows the how GME and UDM fit together. In GMEdhaust be a metamodel
which defines the modeling environment, and a model that is drawn tising
environment defined by the meta.

Separately from that UDM also uses this environment to expgsesseta: a GME UML
paradigm (meta) defines a UML class diagram environment tofgpédM meta with
this class diagram. In this configuration the UDM meta is a GME modsk(diagram).
To create UDM meta from a GME meta we need to converGYiE meta to the GME
UML class diagram paradigm.

The UDM Interpreter Generator for Generic Modeling Environment

2. Generating the Meta

Having a GME metamodel is created to develop the modeling environmealiso have
to create a meta for the UDM environment. This process has noabaenated yet, so
UDM meta must be created manually.

2.1 Meta Creation Process Overview

The UML class diagram can be generated from the GME metg ttsnGME2UML
interpreter. This is available with the GReAT installation. ¢wlthe instructions for the
GME2UML interpreter to generate the UML class diagram.

The UML class diagram should then be interpreted using the UML2KXR&preter that
comes with UDM. In fact this interpretation process creat&OM backend of the
metamodel without the corresponding DTD file. Udm.exe must thenrberrahis XML
file. Udm.exe creates *.h and a *.cpp file along with the DTD. flleese files are the
code to set up a static memory backend for the meta-information.

3. Using the Generator

The Generator is a Windows Wizard application with a well-known user inteffaagse
it you need Windows 98 or later and Visual Studio 6.0.

3.1 Meta loading and caching
The configuration options for meta loading and caching are presented in Figure 2.

b eta Loading

+ Load the meta a5 a static b and .cpp files and add o my project [Becommended)

Load the meta dynamically. Thiz option requires advanced UDM programming skills
ta build paradigrm-independent interpreters bazed on meta infarmation.

O ptimization
' Direct MGA Acces [Recommended)

Static Udm Access. Lze thiz option if you have to traverse the model zeveral times
£ o vour interpreter has to navigate between objects intensively, and does not want
ko rmodify the perzistent madel.

Figure 2. Meta loading and caching configurations

The UDM Interpreter Generator for Generic Modeling Environment

3.1.1 Dynamic vs. Static Meta

Static meta must be compiled to the interpreter. This is tiegbaolution for supporting
only one meta (paradigm), and most of the time it is enough.

Dynamic meta is based on the DOM representation generatibe ML class diagram
interpreter. When one wants to write a GME interpreter, which stgpuoultiple
paradigms, and the meta is another input data along with the ntbdeljs the
appropriate option. Because the meta is not available at prograntimeg it is

uncomfortable to traverse the model and writing this code needs advéaiiakl

programming skills and familiarity with UDM insights.

3.1.2 Optimization

For optimization purposes the generator offers creating a mebaakend (static data
network) and copies the model to this backend. That means that every model eldment w
be read from MGA, and in case of huge models this takes signiacaunt of time. On

the other hand if your interpreter traverses the models sewaeahhd reads it more than
once, it is worth using this facility. Currently writing dédgtack to MGA is not supported,
modifications in the cache will not be saved to GME.

3.2 Configuring UDM Development Environment and med paths

3.2.1 UDM Environment Settings

Enter the path of the UDM installation. The default path taken ft@rehvironment is
already inserted, but you may change it to another install&ider where you have
installed UDM.

UDM Path: [E:\UDM_215" Browse... |

Figure 3. UDM Environment settings

|' 10k Ervvironment

3.2.2 Meta settings

Based on the selection made in the previous step there are two different options here.

— keta Informatian

Header File Path: I Browse... |
Ce+File Path: | Browse... |

The UDM Interpreter Generator for Generic Modeling Environment

Figure 4. Code-based meta

If we chose static backend (Figure 4) we must specify the patieé .cpp and .h files.
These will be copied to the project folder and will be added to the Visual C++ project.

— b eta Infarmation

% Static Diata Metwark
" ML Backend

Backend F'ath:l Browze. .. |

[T User Select

Figure 5. Dynamically loaded meta

If the meta is loaded dynamically (Figure 5.) we can chosee@ary backend or an
XML file. This path will be stored in theonfig global variable in the interpreter code. If
User Selects selected, a code snippet is generated and the interpriét@sknathe user to
select the meta at run-time.

3.3 Component Settings

The component settings (Figure 6.) are required by the GME interpneerface. We
must provide a name for the component and specify the paradigmwament to
interpret. An interpreter can be registered for all paradigms.

— Companent
M ame: I Frog (D IME.&.Interpreter.
[Display lcon on GME Toolbar Paradigms: I [~ al
Location of GME interface files: C:AProgram Files\GME \nterfaces Browse... |

Figure 6. Component Configuration

An icon (included in the project) can be displayed on GME toolbar itgstering the
interpreter.

5. The Generated Code

The generated code contains two main configuration files, one for (LlvhConfig.h),

and one for GME (ComponentConfig.h). Most of the settings specifidieigenerator
can be modified in these files.

The UdmApp.cpp file contains the main entry point of the UDM-baseupreter. It is
passed an open backend pointer that can be memory (if caclenghiked) or a GME

The UDM Interpreter Generator for Generic Modeling Environment

backend pointer. ThimcusObject is the currently open model window. If we display icon
on GME toolbar this can be null object, otherwise not. $#ectedObjects are the
currently selected GME objects that also can be null objecis dbjects selected. The
framework caches all the exceptions to protect GME from unhaediegption crashes
caused by this in-process COM component interpreter.

6. References

[1] ISS GME User's Manual, ISIS Vanderbilt University, part of GME distribution
[2] Bakay A.: The UDM Framework, ISIS Vanderbilt University, 2001 December

