Udm Regression Test Developer’s Guide

Introduction

If you, as a UDM user discover a bug in the UDM generic libraries, the UDM tools or in the files generated by UDM tools, you should develop a UDM regression test, which demonstrates how to reproduce that bug. The test must reveal the bug by failing at a specific location in the UDM code base.

This document contains a step-by-step guide and a list of rules that the test developers must follow when creating Udm regression tests. Generally we recommend using the CppUnit unit testing library, which provides an easy-to-use programmatic framework to develop unit tests. Note, that you are not required to use CppUnit if the test would be more difficult to write using CppUnit, but you are required to comply with the regression test rules. The systematic application of the rules and conventions described below will
1. help UDM developers to fix the bug as soon as possible
Using the test, the developer will be able to reproduce the bug straight away, and he can also confirm that he has fixed the bug by showing that the test succeeds.
2. ensure that the same bug has not been introduced as a result of later changes
Repeatable regression tests allow us to build automated test systems. Run periodically, automated test systems guarantee that UDM code modifications do not effect your usage scenario, that you expressed with your regression tests.
Step-by-step guide to create a Udm regression test

1. Make sure you have set up a UDM development environment and built UDM successfully on your machine (see Udm_compile_guide.txt)

2. Insert a new Win32 Console Application Visual Studio project under %UDM_PATH%\tests into UdmTests.dsw.

3. Add ..\..\include (this is the UDM include folder) to Additional Include Directories in the Project Settings.
4. Set Code Generation to [Debug] Multithreaded DLL in the Project Settings

5. Add ../../lib (this is the UDM lib folder) to Additional Library Path in the Project Settings

6. Add your Regression test code. See the next session for rules and conventions that your test program must obey. If you want to use CppUnit, which is strongly recommended, see appendix for code templates.
7. Add a project dependency into UdmTestsAll.dsp for your test project.

8. Make sure your test works correctly and can be compiled automatically

9. Check in your changes into source control

Udm Regression Test creation rules and conventions
Rules for preparing a regression test:

1. The test must be able to run on its own i.e. without any command line arguments

2. The test must demonstrate the bug by failing at a specific location in the UDM code base. The test must strive to exit gracefully, i.e. it must catch exceptions, and return a non-zero error code if the test failed. This means that unless you want to demonstrate that UDM crashes, you must provide the location of the bug, and return with a non-zero error code from your test.
3. All the necessary files must be included under the test’s project folder (preferably in a subfolder, like “testdata”) to execute the test, such as input example models, output reference models, XML Schemas, GME paradigms, 3rd party tools other than the UDM 3rd party tools.

4. Refrain from storing binary files, .mga models, or any other files that can be automatically generated by GME and UDM tools, in the source control. In particular

a. .mga files are stored as .xme files,

b. udm .xml or .udm files are generated from UML class diagrams by the UML2XML silent mode interpreter

c. UDM domain specific API and XML schemas are generated by the UDM code generator tool Udm.exe. Do not store any UDM domain specific API files and XML Schemas in source control.
d. If paradigm registration is necessary, the test must backup the user’s old paradigm, if any, and recover it later after the test has completed.
See the next section to learn how these jobs can be executed at compile time by invoking VB scripts in custom build steps.

Naming conventions:

1. Project name is started with the prefix “test_”, and should be self-descriptive.

2. Project has a .cpp file which has the project name, and contains the main entry point of the test (i.e. main()).
3. Uml model file names contain _uml suffix, udm xml file names contain _udm suffix, export GME paradigms contain _meta suffix.
Udm Regression test custom build options

This section explains how to perform GME model conversions, GME paradigm registrations and UDM custom API generations automatically in compile-time using custom build options in Visual Studio. In general, these jobs are executed with the help of MS-DOS batch files and VB scripts which are located in your %UDM_PATH%\etc folder. This means that you must have VB Scripting Host (VSH) installed to run the scripts. VSH is installed on every version of Windows (>=98).
1. How to import a GME model?
You cannot store .mga files in source control, because they have binary format and they are not interchangeable between GME instances on different machines. You must export the model from GME, and store the resulting .xme file in source control. If your test uses a GME model, the model must be imported to GME at compile time. This is what CreateMga.vbs does, i.e. convert an .xme file into an .mga file. Note that you have to have the model’s paradigm registered before the conversion. To use this script from custom build, first add YourModel.xme into your Visual Studio test project, then set the Custom Build settings:

Table 1 Custom build options for CreateMGA.vbs

	Description
	Converting $(InputPath) to $(InputDir)\$(InputName).mga

	Commands
	"$(UDM_PATH)\etc\CreateMGA.vbs" "$(InputName).xme" "$(InputName).mga" <Paradigm>

, where Paradigm is your model’s paradigm.

	Outputs
	$(InputName).mga

2. How to register a GME paradigm?
This is a two-step process. First you import your GME paradigm, which is a GME model according to Step1. Next you register the paradigm by invoking CreateXmp.vbs which in turn invokes the MetaGme interpreter. To use CreateXmp.vbs from custom build, first add YourParadigm.mga into your Visual Studio test project, then set the Custom Build settings:

Table 2 Custom build options for CreateXmp.vbs

	Description
	Registering paradigm $(InputPath)

	Commands
	"$(UDM_PATH)\etc\CreateXmp.vbs" "$(InputPath)"

	Outputs
	$(InputName).xmp.log
$(InputName).mta
$(InputName).xmp

Note: If the test registers a paradigm, then it might overwrite the user's paradigm, therefore other user models will become deprecated and might not load into GME.
3. How to generate UDM domain specific API and XSD schema?
The Udm domain specific API and XSD schema are generated by the Udm code generator tool. These files can be generated from a UML class diagram, which is GME model file in the UML paradigm, so you start off with importing the UML model .xme as explained in Step1. Then you run the UMLXML interpreter in silent mode to generate UDM XML files by using CreateUdmXml.vbs. These two tasks are closely related, so there is a separate batch file, Xme2UdmXml.bat, which does both. To use Xme2UdmXml.bat from custom build, first add YourModel.xme into your Visual Studio test project, then set the Custom Build settings:
Table 3 Custom build options for Xme2UdmXml.bat

	Description
	Converting $(InputPath) to $(InputDir)\<Name>_udm.<xml|udm>

, where Name is arbitrary, the extension is .xml if you have one package, .udm if you have multiple packages in your model.

	Commands
	Cd "$(InputDir)"
"$(UDM_PATH)\etc\Xme2UdmXml.bat" "$(InputName).xme"
"$(InputName).mga"

	Outputs
	$(InputDir)\$(InputName).mga

$(InputDir)\<Name>_udm.<xml|udm>

The Udm domain specific API and XSD schema are generated by the Udm code generator tool. To use Udm.exe from custom build, first add the udm xml file you generated above into your Visual Studio test project, then set the Custom Build settings:
Table 4 Custom build options for Udm.exe

	Description
	Generating UDM API files from $(InputPath)

	Commands
	"%UDM_PATH%\bin\Udm.exe" $(InputPath) –d
"%UDM_PATH%\etc"

	Outputs
	<all output files>

Udm.exe generates a .cpp, a .h, and a .xsd file for each package in your model, so make sure to include all these files in the output settings, so that clean can work correctly. See Fig 1 for an example.

[image: image1.png]
Fig 1 Udm.exe custom build example
Appendix – Code Templates
Main code template
main.cpp
#include <cppunit/CompilerOutputter.h>

#include <cppunit/extensions/TestFactoryRegistry.h>

#include <cppunit/ui/text/TestRunner.h>
int main(int argc, char* argv[])

{

CPPUNIT_NS::Test *suite = CPPUNIT_NS::TestFactoryRegistry::getRegistry().makeTest();
// Adds the test to the list of test to run

CPPUNIT_NS::TextUi::TestRunner runner;

runner.addTest(suite);

// Change the default outputter to a compiler error format outputter

runner.setOutputter(new CPPUNIT_NS::CompilerOutputter(&runner.result(),

 std::cerr));

// Run the test.

bool wasSucessful = runner.run();

// Return error code 1 if the one of test failed.

return wasSucessful ? 0 : 1;

}

Tester class template
YourTester.h
#ifndef YOURTESTER_H

#define YOURTESTER_H

#include <cppunit/extensions/HelperMacros.h>

namespace UdmTests

{

class YourTester : public CPPUNIT_NS::TestFixture

{

CPPUNIT_TEST_SUITE(YourTester);

CPPUNIT_TEST(test);

CPPUNIT_TEST_SUITE_END();

public:

void test();

};

};
YourTester.cpp

#include "YourTester.h"

CPPUNIT_TEST_SUITE_REGISTRATION(UdmTests::YourTester);

void UdmTests::YourTester::test()

{

bool foobar = true;

CPPUNIT_ASSERT(foobar);

CPPUNIT_ASSERT(!foobar);

}

Building and executing this program will result in:

.F

D:\project\MoBIESTransition\UDM\tests\Test_CrossLinks\CrossLinkTester.cpp(9):Assertion

Test name: UdmTests::CrossLinkTester::test

assertion failed

- Expression: !foobar

Failures !!!

Run: 1 Failure total: 1 Failures: 1 Errors: 0

Press any key to continue
PAGE
5

