
	Date
	What
	By


	11/15/05 
	Initial version 
	G. Karsai



It has been observed by many users of the tool that exception handling could be a valuable capability in GReAT. This document summarizes initial ideas about how it can be included in the language as a new feature. 

Traditional programming languages often follow the “detect-and-handle” approach to exception handling. Specifically, exceptions are detected in specific parts of the program, and they are handled at the same location or elsewhere. Detection might happen automatically (i.e. by the run-time system of the language) or in user-provided code. The handling of an exception can happen immediately after the detection, within the same lexical scope (i.e. “block”), or in another block (higher up in the call-chain) that established an exception handler before calling a lower-level block that ultimately led to the block generating the exception. A similar model can be used in GReAT as follows. 

1. Exception categories
Exceptions represent special situations that occur at execution time and potentially indicate a failure in the transformation process. Categories are as follows.

	Category
	Explanation

	No match
	The pattern in a rule failed to match.


	Guard failed
	There was a successful match, but the guard evaluated to false.


	Attribute mapping fault
	The attribute mapping code generated an exception.


	Distinguished merging fault
	The distinguished merging feature was used on a group of matches of uneven size.


	Illegal association
	The rule attempted to create an association among objects that is not compliant with the metamodel.


	Wrong association cardinality
	The rule attempted to create an association among objects that is not compliant with the cardinality constraints in the metamodel.


	Binding with wrong type
	Initial binding to a pattern variable violates type compatibility.


	User defined
	Attribute mapping code detected an erroneous situation and generated an exception.


	Input structure mismatch
	Input bindings to a rule come from different sources.



Note that some of these categories are can be traced back to modeling errors (i.e. incorrect GReAT programs). For these cases, a “GReAT Checker” could be built that is included in the model interpreter that verifies that models comply with the semantic rules of GReAT (before the GR Engine or the Code Generator is executed). 

3. Exception handling

1. Exception handling happens in a block that embeds (directly or indirectly) a rule that has detected an exception. Exception handling can take the following actions. 

2. Execute some user-defined code (optionally), and then

a. Terminate the transformation process 

b. committing all changes, or

3. aborting all changes, or

4. Change the control flow of the rewriting process: take an alternative path of execution. 

Questions:

- Is the list of exception categories complete? 

- Is the list of exception handling actions complete? 

- Is there a need to propagate “state” information from the detection phase to the handling phase? How can this be done? 

