
1. SignalFlowGroup Example
This example demonstrates the group-match feature in GReAT. The rule GroupingRule
demonstrates how the feature group-match works. In this rule, there is a Group element
which contains PrimitiveComponent PC1 and PC2, and Signal association as its
members. After all matches found, the matches will be grouping into different subgroups
according to the criteria defined in the Group attribute “Criteria for grouping matches”.
For each group of matches, there is a new CompoundComponent newCC will be created,
and then move all objects in the group into this new created parent object. Finally
applying the AttributeMapping code will set a new name to the CompoundComponent
newCC.

Please be careful about the format of the code in the AttributeMapping in the rule which
contains Group element. Since a rule with Group is not restrained to the single bindings
as other rules, the PatternClass name doesn’t represent single object in the code, but the
list of objects bound to the PatternClass.

Please notice that currently group-match feature is only supported by GRE.

Please refer to the GReAT user manual for more information.

1.1. Directory Organization
 SignalFlowGroup

o MoveSignalFlowGroup.mga - The transformation file
o MoveSignalFlowGroup.xme - transformation exported
o Meta

 Icons - Icons for the GS_SignalFlowGroup
paradigm

 GS_SignalFlowGroup.mga - GS_SignalFlowGroup metamodel
 GS_SignalFlowGroup.xme - the above metamodel exported to

XML
 GS_SignalFlowGroup.xmp - paradigm file

o Models
 mySignalFlow1.mga - sample model
 mySignalFlow1.mga - above sample model exported

o Udm - Will contain the Udm meta files

1.2. How to run SignalFlowGroup example?
Open SignalFlowGroup transformation model

o Directly open $/MoveSignalFlowGroup.mga, if it fails, open GME, choose
File/Import XML, and choose $/MoveSignalFlowGroup.xme

MoveSignalFlowGroup.mga contains the transformation rules, UDM compatible meta
information paradigms and configuration information. Following is the folder structure
which is shown in browser:

 MoveSignalFlowGroup
o GS_SignalFlowGroup

 - UML Metamodel class diagram format

o zt_MoveSF - Folder containing the transformations
o zz_Config - Folder containing configuration info

Run the MoveSignalFlowGroup transformation model

o Invoke the GReAT Master Interpreter with icon (This is a required step
for the first time running). Use the default file paths and names provided.

o The transformations can be invoked in various ways
1. GR Engine – Performs the transformations in an interpretive manner
2. GR Debugger – Provides a user interface and debugging features such

as break points, single step, step into etc.
3. Code generator – Converts the transformation into code that can be

compiled and executed.
o To run GR Engine, it could be done either :

 In the GReAT Master Interpreter dialog, check the box “Run GR Engine”-
or-

 Directly invoke the GR Engine interpreter with icon .
 The default input file is $/Models/mySignalFlow1.mga
 The output files will be $/Models/my_newSignalFlow.mga

o To run the GR Debugger
 Open a command prompt and go to the sample directory $/. Invoke GRD

by calling GRD.exe , then load the config file $/config.mga -or-
 Directly invoke the GR Debugger interpreter with icon .

	SignalFlowGroup Example
	This example demonstrates the group-match feature in GReAT.
	Please be careful about the format of the code in the Attrib
	Please notice that currently group-match feature is only sup
	Please refer to the GReAT user manual for more information.
	Directory Organization

	SignalFlowGroup
	MoveSignalFlowGroup.mga - The transformation file
	MoveSignalFlowGroup.xme - transformation exported
	Meta
	Icons - Icons for the GS_SignalFlowGroup paradigm
	GS_SignalFlowGroup.mga - GS_SignalFlowGroup metamodel
	GS_SignalFlowGroup.xme - the above metamodel exported to XML
	GS_SignalFlowGroup.xmp - paradigm file
	Models
	mySignalFlow1.mga - sample model
	mySignalFlow1.mga - above sample model exported
	Udm - Will contain the Udm meta files
	How to run SignalFlowGroup example?

	Open SignalFlowGroup transformation model
	Directly open $/MoveSignalFlowGroup.mga, if it fails, open G
	MoveSignalFlowGroup.mga contains the transformation rules, U
	MoveSignalFlowGroup
	GS_SignalFlowGroup
	-
	UML Metamodel class diagram format
	zt_MoveSF
	-
	Folder containing the transformations
	zz_Config
	-
	Folder containing configuration info
	Run the MoveSignalFlowGroup transformation model
	Invoke the GReAT Master Interpreter with icon (This is a re
	The transformations can be invoked in various ways
	GR Engine – Performs the transformations in an interpretive
	GR Debugger – Provides a user interface and debugging featur
	Code generator – Converts the transformation into code that
	To run GR Engine, it could be done either :
	In the GReAT Master Interpreter dialog, check the box “Run G
	Directly invoke the GR Engine interpreter with icon .
	The default input file is $/Models/mySignalFlow1.mga
	The output files will be $/Models/my_newSignalFlow.mga
	To run the GR Debugger
	Open a command prompt and go to the sample directory $/. Inv
	Directly invoke the GR Debugger interpreter with icon .

