GReAT Regression Test Developer’s Guide

Introduction

If you, as a GReAT user or developer discover a bug in the GReAT suite of tools, you should develop a GReAT regression test, which demonstrates how to reproduce that bug. The test must reliably reproduce the bug in a version of GReAT which has not been fixed. In General, this will mean running an offending GReAT transformation on a known input model, producing an output model, then comparing the output model to the expected out model.

This document contains a step-by-step guide and a list of rules that the test developers must follow when creating GReAT regression tests. The testing framework will look very similar to the UDM regression tests, but there are some key differences. For GReAT tests, we recommend using the Python unittest package, which provides an easy-to-use programmatic framework to develop unit tests, similar to CPPUnit. Note, that you are not required to use Python for your output model comparison test, but you are required to comply with the regression test rules, which includes invoking your testcode from Python scripts. The systematic application of the rules and conventions described below will
1. help GReAT developers to fix the bug as soon as possible
Using the test, the developer will be able to reproduce the bug straight away, and he can also confirm that he has fixed the bug by showing that the test succeeds.
2. ensure that the same bug has not been introduced as a result of later changes
Repeatable regression tests allow us to build automated test systems. Run periodically, automated test systems guarantee that GReAT code modifications do not affect your usage scenario that you expressed with your regression tests.
Step-by-step guide to create a GReAT regression test

1. Make sure you have set up both the UDM development environment and GReAT development environment, building both UDM and GReAT successfully on your machine (see Udm_compile_guide.txt and GREAT_compile_guide.txt)

2. Create a new Python Package in %GREAT_PATH%\Tests (add a new folder with a script “__init__.py”)
3. Add your Regression test code. See the next session for rules and conventions that your test program must obey. See appendix for Python unittest code templates.
4. Add invokation (and compilation if not python code) of your test in GreatTestsAll.py
5. Make sure your test works correctly and can be compiled automatically

6. Check in your changes into source control

GReAT Regression Test creation rules and conventions
Rules for preparing a regression test:

1. The test must be able to run on its own i.e. without any Human intervention.
2. The test folder must include a README.txt explaining what the test is trying to demonstrate.

3. The test must demonstrate the bug by triggering a specific GReAT error message or producing an unexpected output model from a GReAT transformation. The test must strive to exit gracefully, i.e. it must catch exceptions, and return a non-zero error code if the test failed.
4. All the necessary files must be included under the test’s package folder to execute the test, such as input example models, output reference models, UMT models, XML Schemas, GME paradigms, 3rd party tools other than the UDM 3rd party tools.

5. Refrain from storing binary files, .mga models, or any other files that can be automatically generated by GME and UDM tools, in the source control. In particular

a. .mga files are stored as .xme files,

b. Config.mga, transformation-gr.xml, udm .xml or .udm files are generated from the GReAT master interpreter in silent mode as necessary.
c. If paradigm registration is necessary, the test must backup the user’s old paradigm, if any, and recover it later after the test has completed.
See the next section to learn how these jobs can be executed at compile time by invoking VB scripts in custom build steps.

Naming conventions:

1. Package name is started with the prefix “test_”, and should be self-descriptive.

2. Package has .py files containing test suites that will be used to run any GReAT transformation and output comparison program, reporting the results back to GreatTestsAll.py
3. Uml model file names contain _uml suffix, udm xml file names contain _udm suffix, exported GME paradigms contain _meta suffix.
GReAT Regression test __init__.py files

This section explains how to perform GME model conversions, GME paradigm registrations and GReAT file generations automatically in test run-time using __init__.py files. In general, these jobs are executed with the help of MS-DOS batch files and VB scripts which are located in your %UDM_PATH%\etc and %GREAT_PATH%\etc folders. This means that you must have VB Scripting Host (VSH) installed to run the scripts. VSH is installed on every version of Windows (>=98).
1. How to import a GME model?
You cannot store .mga files in source control, because they have binary format and they are not interchangeable between GME instances on different machines. You must export the model from GME, and store the resulting .xme file in source control. If your test uses a GME model, the model must be imported to GME at compile time. This is what CreateMga.vbs does, i.e. convert an .xme file into an .mga file. Note that you have to have the model’s paradigm registered before the conversion. To use this script from custom build, first add %UDM_PATH%\etc to your PATH environment variable, then add the line: os.system('CreateMGA.vbs <inputName>.xme <outputName>.mga <Paradigm>')
2. How to register a GME paradigm?
This is a two-step process. First you import your GME paradigm, which is a GME model according to Step1. Next you register the paradigm by invoking CreateXmp.vbs which in turn invokes the MetaGme interpreter. To use CreateXmp.vbs from custom build, add the line: os.system('CreateXMP.vbs <inputName>.mga')
Note: If the test registers a paradigm, then it might overwrite the user's paradigm, therefore other user models will become deprecated and might not load into GME.
3. How to generate Config.mga, GR.xml, and .udm files?
If your test is testing Phase II or III of a GReAT transformation, you want to do Phase I automatically in __init__.py. For this purpose, a silent mode has been added to the GReAT Master Interpreter. First, add %GREAT_PATH%\etc to your Path environment variable, then add the line: os.system('RunGReATMasterInt.vbs <FullPath><inputUMT>.mga)
Note: The fullpath must be included for the Great Master Interpreter to run correctly, and it will use the default names for each file specified in the input UMT model.
Note2: Currently, there is a bug. The GenerateConfig Interpreter when running in silent mode will not generate the UDM directory and files.

Appendix – Code Templates
Tester class template
import os

import unittest

class YourTest(unittest.TestCase):

 def setUp(self):

 #setup stuff before each test

 def tearDown(self):

 #tear down stuff after each test

 def testYourStuff(self):

 # run some GReAT transformation

 os.system('gre.exe Config.mga')

 # check the results using outside program
 returnCode = os.system(‘program to compare output graph with known good.exe’)

 if (returnCode == good):

 self.assert_(1) #comment about what was good

 else:

 self.assert_(0) #comment about what went wrong

 def testYourStuff2(self):

 # run another GReAT transformation

 os.system('gre.exe Config2.mga')

 #run a python function to check

 self.assert_(PythonCodeChecker(input))

#main for running YourTest by itself

if __name__ == '__main__':

 unittest.main()

#suite definition for adding YourTest to GreatTestsAll.py

def suite():

 suite = unittest.makeSuite(YourTest)

 return suite
Example __init__.py:

import os

#note, this test uses the transformations in the samples folder
#normally your tests will have the transformations in its own folder
dir = os.getcwd()

os.chdir('../Samples/House2Order/Meta')

#import HouseModel and Order metamodels, then register them

os.system('CreateMGA.vbs HouseModel_meta.xme HouseModel.mga MetaGME')

os.system('CreateMGA.vbs Order_meta.xme Order.mga MetaGME')

os.system('CreateXMP.vbs HouseModel.mga')

os.system('CreateXMP.vbs Order.mga')

os.chdir('../Models')

#import the sample HouseModel for the transformation

os.system('CreateMGA.vbs myHouse1.xme myHouse1.mga HouseModel')

os.chdir('..')

#import the House2Order UMT model

os.system('CreateMGA.vbs House2Order.xme House2Order.mga UMLModelTransformer')

#Run GReAT Master Interpreter in Silent Mode on House2Order.mga

housedir = os.getcwd()

os.system('RunGReATMasterInt.vbs '+housedir+'\\House2Order.mga')

os.chdir(dir)

os.chdir('../Samples/SignalFlow2FlatSF/meta/FlatSF')

#import metamodels for SF2FSF sample

os.system('CreateMGA.vbs FlatSF_meta.xme FlatSF.mga MetaGME')

os.system('CreateXMP.vbs FlatSF.mga')

os.chdir('../SignalFlow')

os.system('CreateMGA.vbs SignalFlow_meta.xme SignalFlow.mga MetaGME')

os.system('CreateXMP.vbs SignalFlow.mga')

os.chdir('../../models')

#import sample SignalFlow models

os.system('CreateMGA.vbs SignalFlow_1.xme SignalFlow_1.mga SignalFlow')

os.system('CreateMGA.vbs SignalFlow_2.xme SignalFlow_2.mga SignalFlow')

os.chdir('..')

#import the SF2FSF UMT model

os.system('CreateMGA.vbs SignalFlow2FlatSF.xme SignalFlow2FlatSF.mga UMLModelTransformer')

SF2FSFdir = os.getcwd()

#Run GReAT Master Interpreter in Silent Mode on SignalFlow2FlatSF.mga

os.system('RunGReATMasterInt.vbs '+SF2FSFdir+'\\SignalFlow2FlatSF.mga')

os.chdir(dir)

os.chdir('../Samples/StateChart\Meta')

#import metamodels for HSM2FSM sample

os.system('CreateMGA.vbs FiniteStateMachine_meta.xme FiniteStateMachine.mga MetaGME')

os.system('CreateXMP.vbs FiniteStateMachine.mga')

os.system('CreateMGA.vbs StateChart_meta.xme StateChart.mga MetaGME')

os.system('CreateXMP.vbs StateChart.mga')

os.chdir('../Models')

#import sample StateChart models

os.system('CreateMGA.vbs 2BitCounter.xme 2BitCounter.mga StateChart')

os.system('CreateMGA.vbs 3BitCounter.xme 3BitCounter.mga StateChart')

os.chdir('..')

#import the HSM2FSM UMT model

os.system('CreateMGA.vbs HSM2FSM.xme HSM2FSM.mga UMLModelTransformer')

HSM2FSMdir = os.getcwd()

#Run GReAT Master Interpreter in Silent Mode on SignalFlow2FlatSF.mga

os.system('RunGReATMasterInt.vbs '+HSM2FSMdir+'\\HSM2FSM.mga')

os.chdir(dir)
PAGE
3

