

GReAT User Manual

Aditya Agrawal
Zsolt Kalmar
Gabor Karsai

Feng Shi
Attila Vizhanyo

Institute for Software-Integrated Systems
Vanderbilt University

November 2003

•

Table of Contents

1. Introduction... 1

1.1. Installation Instructions... 1
2. Package Contents .. 2
3. Step by Step guide to using GReAT... 4

3.1. Transforming models from one GME paradigm to another 4
3.2. Transforming GME models to text ... 6

4. The Tool Chain Overview .. 9
4.1. The GReAT Master Interpreter... 10
4.2. The UML2XML Interpreter.. 11
4.3. The GenerateGR Interpreter ... 11
4.4. The GenerateConfig Interpreter.. 11
4.5. The Invoke GR Engine Interpreter ... 11
4.6. The Code Generator Interpreter .. 11
4.7. The Library Update Utility ... 11
4.8. The Configuration Model Editor .. 12
4.9. The Port Connector Tool .. 13
4.10. The Block Generator Tool .. 13
4.11. The Create Next Rule Tool ... 14

5. Semantics of the Transformation Language ... 16
5.1. Heterogeneous Graph Transformations .. 16
5.2. Rule ... 18
5.3. Sequence of Rules... 22
5.4. Hierarchical Rules... 23
5.5. Branching using test case.. 27
5.6. Parallel Execution ... 29
5.7. Global Container... 32
5.8. Sorting... 33
5.9. Distinguished Merging.. 36
5.10. Match-any-association .. 39
5.11. Group Matches.. 41
5.12. Termination... 43
5.13. Embedded with Customized Code.. 43
5.14. Code Library ... 44
5.15. User Code libraries ... 45

6. GR Engine... 46
6.1. GRE.exe .. 46
6.2. InvokeGRE.dll .. 47

7. Code Generator ... 49
7.1. How to compile the generated files .. 51
7.2. How to execute the generated files ... 51

8. GR Debugger .. 52
8.1. Overview: The Debugging Interface .. 52

•

8.2. Starting the Debugger ... 52
8.3. Call Stack Window ... 53
8.4. Debug Options on the Control Toolbar .. 53
8.5. Running Debug Mode Versus Release Mode... 53
8.6. Debugger Toolbar And Menu Items ... 54
8.7. Debugger Windows .. 54
8.8. Halting a Program... 55
8.9. Running to a Location... 55
8.10. Stepping Into Rules... 55
8.11. Stepping Over or Out of Rules ... 55
8.12. Viewing and Enabling Breakpoints .. 56
8.13. Viewing the Call Stack for a Rule .. 56
8.14. Viewing the Value of a Variable .. 57

9. GReAT Configuration .. 58
9.1. High-level ... 58
9.2. Low-level .. 61

10. Specifying Command Line Arguments .. 63
10.1. Example 1 ... 63
10.2. Example 2 ... 64

•

1. Introduction
The GReAT tool suite has been designed for the rapid specification and implementation
of model to model transformations. These transformations are required in many domains.
A few use case scenarios of this tools suite are:

 Developing model interpreters that convert gme models (conforming to a
metamodel) to XML files conforming to a given dtd/xsd.

 Developing model interpreters that convert gme models (conforming to a
metamodel) to a set of secondary data structures. A visitor can then be written to
convert the secondary models to text.

 Developing model interpreters that convert gme models (conforming to a
metamodel) to gme models conforming to another metamodel.

 Developing transformers that convert xml files belonging to one dtd to xml files
belonging to another dtd.

 Developing transformers that convert xml files belonging to a given dtd to gme
models.

1.1. Installation Instructions
Download the latest GReAT install shield package, change log and readme from
http://www.isis.vanderbilt.edu/projects/mobies/filedownloads.asp. The readme will have
the updated list of required software and install instruction.

• 1

http://www.isis.vanderbilt.edu/projects/mobies/filedownloads.asp

2. Package Contents
 Languages

1. UML Model
Transformer The Graph Transformation Language

2. MetaGME A UDM compatible MetaGME
3. UML A UDM compatible UML

4. GReAT Config A paradigm to store configuration information
(not directly used by the user)

 UML Model Transformer (UMT) Interpreters

GReAT Master
Interpreter

It receives information of all the file locations and
calls GenerateConfig, GenerateGR and
Uml2XML. It can optionally call the Invoke
Engine and Code Generator interpreter

 Generate GR Converts rewriting rules to internal format

 Generate Config Converts configuration information to GReAT
Config

UML2XML Converts the Meta information to UDM

Invoke Engine Executes engine that performs transformations

 Code Generator Converts transformation rules to C++ code.

 Library Update Updates references from one class diagram
package to another

Configuration
Model Editor

It invokes a GUI to edit the configuration model
parameters for generating or updating the
configuration model.

 Port Connector It is used to connect output ports of an expression
to the input ports of another expression.

 Block Generator

Select a sequence of connected rules, and this tool
generates a new Block type rule, and moves the
selected rules inside it, with ports connected
automatically.

 Create Next Rule

Select one rule, invoke this tool, and a new rule is
created with the same number of input ports as
the previous rule, all bound to the corresponding
input classes. The two rules are connected as
well.

 MetaGME interpreters

 MetaGME2UML Converts GME metamodels to a UDM
compatible UML Class diagram.

• 2

 MetaGME2UMT Converts GME metamodels to a UML package
and attaches it to the provided UMT file.

 UML interpreters

UML2XML Converts UML class diagrams to UDM meta

XML file

 Command Line Tools
1. CG.exe Command line version of the code generator
2. GRE.exe Command line version of the transformation

engine
3. GRD.exe Debugging GUI for the transformations

• 3

3. Step by Step guide to using GReAT
The GReAT package can be used in various scenarios. This section will give a walk
through of two typical scenarios.

3.1. Transforming models from one GME paradigm to another
This is a scenario where there exists two GME metamodels, source and target and the
user wants to create a transformation to transform source models to equivalent target
models.

1. Open the source metamodel and invoke the MetaGME2UMT interpreter. The
interpreter prompts the user to provide the transformation file name. This can
either be a pre-existing or a new transformation file. This transformation file will
be referred to as <TF> subsequently. Then Run the MetaGME interpreter () on
the source metamodel.

2. Open the target GME Metamodel and invoke the MetaGME2UMT interpreter
() and specify the same <TF> file. Run the MetaGME interpreter on the target
metamodel.

3. Open the transformation file <TF> in GME. Using the Browser, you will see your
source and target GME Metamodels inserted under two packages in UML format.
The name of these package folders (a.k.a. libraries) will have the following
format:
 New<Paradigm Name><Unique ID>
Decoration of paradigm names is important for the library update interpreter, i.e.
the library updater can differentiate between the new and old paradigms using
these names. The update process is described in step 6, here it is assumed, that
you inserted the Metamodels the first time.
Please remove the new and the ID part from the name. It is imperative that the
name of the folder be the same as the paradigm name.

4. You can now start to create your transformation rules. Use the Browser to insert a
Transformation folder and insert a Block model into that folder for the start rule.
The start rule can contain any number of input and output ports. These ports
represent the various inputs and outputs of the actual rule, or more precisely, the
objects in the input and output models, which are received and passed by the rule.
There should be at least one port per model file. For example, in this case there
will be at least two ports, one for the root object in the input (or source) model
and another for the root object in the output (or target) model, however it is not
compulsory to pass root objects, you can specify any object.

Note: These top level ports need to be named uniquely for proper execution of the
transformations. You should check all constraints on the transformation model
before running the GReAT Master Interpreter.

Now you typically continue with creating subsequent blocks, test, rules, etc. in the
root rule. The transformation steps can be specified in the rules; blocks, for-

• 4

blocks, tests and cases control the sequence of the transformation steps by
specifying hierarchical and conditional organization of the rules. (For more
background information, please refer to the GReAT User Manual, Chapter 3.
Semantics of the Transformation Language)
Addition of a rule into a block consists of three steps:

• Specify the pattern by creating a reference to those Metamodel classes
which you want to participate in the pattern. Then create the pattern links
between the pattern objects. Patterns are displayed in black.

• Specify a set of objects and links you want to create or delete, similarly.
Then set the Action attribute to “CreateNew” or “Delete” of each object
and link in the set. Optionally, specify Guard or AttributeMapping code
for more sophisticated operation. Objects and links with action
“CreateNew” are colored blue, with action “Delete” colored red
automatically for visual separation from pattern objects and links.

• Specify the connection of the rule with its consisting block, first by
creating ports in the rule, then by connecting these ports with the ports of
the parent block. These directed connections represent clearly the flow of
inputs and outputs between the rules.

• The minimal proper transformation consists of the root block containing
one rule created as above. Later, as your transformation evolves, you want
to add more rules, connect and organize them hierarchically.

5. After creating the transformations you need to create a configuration. This
specifies how the transformations will be invoked by the various GR
transformation tools (GR Engine, Debugger and the Code Generator). Minimal
configuration requires the specification of

• the start rule which will be invoked first,
• the meta info; this configuration element is specified automatically by

running the “Convert transformation rules to GR format” and the “UML 2
UDM/XML” interpreters, and

• the input and output file types, which define the meta name, root folder
and file mode of the participating files.

Finally, the created configuration must be interpreted by the “GReAT Master
Interpreter” interpreter. Please refer to Chapter 9.

6. If you update your Metamodel, you need to reflect those changes in your
transformation.
 Run the MetaGME2UMT interpreter again. This will create another package

in <TF> with the name New<Paradigm Name><Unique ID>.
 Run Library Update () and specify the old library as <ParadigmName> and

the new library as New<Paradigm Name><Unique ID>. The Library Update
utility will transfer all references to the old library/package to the new
library/package and change the old package name from <ParadigmName> to
Old<Paradigm Name><Unique ID> and change new package name to
<ParadigmName>

 Delete Old<Paradigm Name><Unique ID> from <TF>
7. Different parts of the transformation model are converted into different internal

file representations.

• 5

 Transformation information in converted to GR format
 UML Packages and cross links are converted to UDM meta format
 Configuration is converted to GReATConfig format.

The GReAT Master interpreter is used to convert the models to the required
formats.

8. After all the files have been generated the transformation can be executed either
through the GRE, InvokeEngine, GRD or through generating code from the
transformations and compiling it.

3.2. Transforming GME models to text
This is a scenario where the user has a GME metamodel and wants to generate text in a
particular format from the models of the metamodel.

The approach to solve this problem is to create a data structure that is close to the output
text format. DOM is an example of such a data structure for the XML format. Then
specify the transformations from the GME models to the data structure and specify the
printing of the data structures to text.

1. Open the metamodel and invoke the MetaGME2UMT interpreter. The interpreter
prompts the user to provide the transformation file name. This can either be a pre-
existing or a new transformation file. This transformation file will be referred to
as <TF> subsequently. Then Run the MetaGME interpreter () on the
metamodel.

2. Open a new project in the UML paradigm of GME and specify the text data
structure.

3. Open the transformation file <TF> in GME. You will see your GME Metamodel
as a package in UML format. The name of this package folder (a.k.a. libraries)
will have the following format:
 New<Paradigm Name><Unique ID>
This decoration of paradigm names are important for the library update
interpreter, i.e. the library updater can differentiate between the new and old
paradigms using these names. The update process is described in step 6, here it is
assumed, that you inserted the Metamodels the first time.
Please remove the new and the ID part from the name. It is imperative that the
name of the folder be the same as the paradigm name.

4. Attach the text data structure file as a library in the <TF> file.
5. You can now start to create your transformation rules. Use the Browser to insert a

Transformation folder and insert a Block model into that folder for the start rule.
The start rule can contain any number of input and output ports. These ports
represent the various inputs and outputs of the actual rule, or more precisely, the
objects in the input and output models, which are received and passed by the rule.
There should be at least one port per model that will be manipulated. For
example, in this case there will be at least two ports, one for the root object in the
input (or source) model and another for the root object in the output (or target)
model, however it is not compulsory to pass root objects, you can specify any
type of objects.

• 6

Note: These top level ports need to be named uniquely for proper execution of the
transformations.

Now you typically continue with creating subsequent blocks, test, rules, etc. in the
root rule. The transformation steps can be specified in the rules; blocks, for-
blocks, tests and cases rather control the sequence of the transformation steps by
specifying hierarchical and conditional organization of the rules. (For more
background information, please refer to the GReAT User Manual, Chapter 3.
Semantics of the Transformation Language)
Addition of a rule into a block consists of three steps:

• Specify the pattern by creating a reference to those Metamodel classes
which you want to participate in the pattern. Then create the pattern links
between the pattern objects. Patterns are displayed in black.

• Specify a set of objects and links you want to create or delete, similarly.
Then set the Action attribute to “CreateNew” or “Delete” of each object
and link in the set. Optionally, specify Guard or AttributeMapping code
for more sophisticated operation. Objects and links with action
“CreateNew” are colored blue, with action “Delete” colored green
automatically for visual separation from pattern objects and links.

• Specify the connection of the rule with its consisting block, first by
creating ports in the rule, then by connecting these ports with the ports of
the parent block. These directed connections represent clearly the flow of
inputs and outputs between the rules.

• The minimal proper transformation consists of the root block containing
one rule created as above. Later, as your transformation evolves, you want
to add more rules, connect and organize them hierarchically.

6. After creating the transformations you need to create a configuration. This
specifies how the transformations will be invoked by the various GR
transformation tools (GR Engine, Debugger and the Code Generator). Minimal
configuration requires the specification of

• the start rule which will be invoked first,
• the meta info; this configuration element is specified automatically by

running the “Convert transformation rules to GR format” and the “UML 2
UDM/XML” interpreters, and

• the input and output file types, which define the meta name, root folder
and file mode of the participating files.

Finally, the created configuration must be interpreted by the “Generate
Configuration file” interpreter. Please refer to Chapter 9

7. If you update your Metamodel, you need to reflect those changes in your
transformation.
 Run the MetaGME2UMT interpreter again. This will create another package

in <TF> with the name New<Paradigm Name><Unique ID>.
 Run Library Update () and specify the old library as <ParadigmName> and

the new library as New<Paradigm Name><Unique ID>. The Library Update
utility will transfer all references to the old library/package to the new

• 7

library/package and change the old package name from <ParadigmName> to
Old<Paradigm Name><Unique ID> and change new package name to
<ParadigmName>

 Delete Old<Paradigm Name><Unique ID> from <TF>
8. Different parts of the transformation model are converted into different internal

file representations.
 Transformation information in converted to GR format
 UML Packages and cross links are converted to UDM meta format
 Configuration is converted to GReATConfig format.

The GReAT Master interpreter is used to convert the models to the required
formats.

9. After all the files have been generated the transformation can be executed either
through the GRE, InvokeEngine, GRD or through generating code from the
transformations and compiling it.

10. To generate data in a particular text format you extend the base visitor and
implement a text dump.

• 8

4. The Tool Chain Overview
This section describes the different interpreter, their use and their dependencies.

Figure 1 GReAT Tool Chain Overview

Interactions and steps between the tools are described as following:
Build Transformation model:

 Attach all UML class diagrams using either MetaGME2UMT or by attaching
UML class diagrams as libraries. When you reattach a class diagram you can
update the references using the LibraryUpdate interpreter (LibraryUpdate.dll);

 Build the transformation rules;
 Build configuration model, please refer to Section 9. GReAT Configuration.

Run Transformation model:
Phase I:

 Invoke GReAT Master interpreter interpreter (GReAT Master Interpreter.dll)
to generate all the required files.

Phase II:
To successfully run Phase II and Phase III, Phase I should have been successfully
executed.

 Run GR Engine to perform the transformation rules on input model. This
package provides two usages of GR Engine, one is used as interpreter
(InvokeGRE.dll), while it can also be used as Win32 application (GRE.exe).
Please refer to Section 6. GR Engine.

• 9

 Run GR Debugger (GRD.exe) to locate bugs in a transformation rules. Please
refer to 8. GR Debugger .

Phase III:
 Run Code Generator to generate C++ code from the transformation rules. This

package provides two usages of Code Generator, one is used as interpreter
(CodeGenerator.dll), while it can also be used as Win32 application (CG.exe).
Please refer to Section 7. Code Generator.

4.1. The GReAT Master Interpreter

 This is the main interpreter and it can call all other interpreters. When invoked, first
a dialog box is displayed that asks for the file path and name for all the intermediate files
(see Figure 2)

Figure 2 Sample of the GReAT Master Interpreter dialog box.

The first phase of the interpretation is the generation of the different files required by the
GR Engine, GR Debugger and the Code Generator. These files are the configuration file,
transformation file and the udm meta file. These files are produced from the distinct parts
of the UMLModelTransformer language. Phase II, is optional and after the files are
created the master interpreter can invoke the GR Engine. Phase III is also optional and
can be used to invoke the Code generator.

• 10

4.2. The UML2XML Interpreter

 This interpreter works on both the UML paradigm in GME and the
UmlModelTransformer paradigm. It converts the uml class diagram into and xml
representation that is used by UDM.

If you have more that one uml package in you project it will create a file with .udm
extension. The .udm file is essentially a zip fille that contains xml files for each package.
For more information on this interpreter you can see the UDM documentation.

4.3. The GenerateGR Interpreter
This interpreter converts the transformation rules to the GR (Graph Rewrite) format. This
format is used to decouple the high level language from the implementation of the
transformation.

4.4. The GenerateConfig Interpreter
The Generate configuration Interpreter converts the configuration information into the
GReAT config format. This is done to again decouple the configuration information form
the UMT language. Details on this interpreter are provided in Section 9.

4.5. The Invoke GR Engine Interpreter

 This interpreter invokes the GR Engine that performs the transformations on given
input and is explained in details in Section 6.2

4.6. The Code Generator Interpreter

 This interpreter generates C++ code that implements the transformation rules and is
explained in Section 6.

4.7. The Library Update Utility

 The Library update utility is used to transfer references from one UML package to
another. In UMT UML class diagrams are added as packages. If a packages change than
you can add the new packages nd migrate all the references fro the old package to the
new package. When invoked the interpreter asks for the name of the old and new
library/uml package.

• 11

4.8. The Configuration Model Editor

 This interpreter invokes the GUI for user to edit the configuration parameters for
generating or updating the configuration model. When invoked, the GUI is shown as
following:

Figure 3 Sample of the Generate Configuration Model interpreter dialog box

The meta names of paradigms involved in the transformation are shown highlighted at
the top of each part and also in the edit field, like SignalFlow and FlatSF in Figure 3. All
required configuration information can be edited in the dialog box, like FileTypeID,
rootclass name, file usage mode, run in memory or not, DTD/XSD file path if XML file
format used, file path, start object full path.
This editor can be invoked at any stage of the transformation model editing, and the
configuration model will be generated if there is none or be updated. To fully finish
editing the configuration model by using this interpreter, StartRule must exist
beforehand.
Details on the configuration model are provided in Section 9.

• 12

4.9. The Port Connector Tool

 The port connector tool is used to connect output ports of an expression to the input
ports of another expression. The output ports of the expression on the left are connected
to the input ports of the expression on the right; thus, the x-position of the two
expressions determines the output ports that will be connected to the input ports.

Simply select the two expressions whose ports you want to connect (hold down CTRL
and left click on the two objects), and invoke the interpreter. Below is an example of
running the interpreter:

Figure 4 Before invoking the port-connector tool

Figure 5 After invoking the port-connector tool

4.10. The Block Generator Tool
The block generator is used to move a group of selected expression rules into a newly
created block and connect the block to the other rules appropriately.

Simply select a group of connected expression rules which need to be put into a Block,
and invoke the Blockify interpreter by clicking the icon. Below is an example to show
the result of running this interpreter. As shown in Figure 6, select Rule_1 and Rule_2,
and invoke the interpreter. A new Block rule is created (as shown in Figure 7) which
contains Rule_1 and Rule_2 inside it. It is also automatically connected to Rule_0 and
Rule_3 as shown in Figure 7.

• 13

Figure 6 Before invoking the Block generator tool

Figure 7 After invoking the Block generator tool

Figure 8 Inside the Block rule

4.11. The Create Next Rule Tool
The Create Next Rule tool is used to automatically create the next rule in sequence. That
is, if you have a rule with Pattern Classes bound to Output Ports, select that rule, and
invoke the tool, and a new rule is created with Input Ports already bound to the same
types of Pattern Classes, and the two rules are wired together.

Figure 9 Before invoking CNR tool (select InputPort_Queue)

• 14

Figure 10 Inside InputPort_Queue

Figure 11 After Invoking Create Next Rule tool

Figure 12 Inside Newly Created Rule

• 15

5. Semantics of the Transformation Language
The Transformation language called Universal Model Transformer (UMT) is described in
this section. The theory and research issues of the language can be found in the technical
document.

The language has a set of basic concepts. In Figure 13 we see the expression hierarchy of
UMT. An expression is the base class for all rule definitions. Expressions are specialized
to be, primitive rules, compound rules and tests. Primitive rules are elementary
computational unit that specify a transformation. Primitives are realized by Rule and
Case. Test is used to specify conditional execution of transformation. It is similar to a
switch case statement in C, C++. A Test contains Cases and based on the success/failure
of the cases different execution paths are chosen. Compound rules are used to modularize
transformation sequences, control transversal schemes and to mitigate complexity.
Compound rules are specialized to Block and ForBlock. Both Block and ForBlock can
contain other compound rules, Rules and Tests. An expression can be considered as a
function definition as well as the use of the function. In order to use a function in another
context we use ExpressionRef. ExpressionRef is a call to a function previously defined.
It can be used to define recursive structures as well as for the reuse of rules.

Figure 13 Expression Hierarchy of UMT

Before explaining the rules the concept of heterogeneous transformations needs to be
introduced.

5.1. Heterogeneous Graph Transformations
UML classdiagrams are used in GReAT to capture the meta informaiton. As specified
earlier GME metamodels can be converted to UML and attached with a transformaiton
using the UML2XML interpreter. Alternatively a UML class diagram can either be
directly create in the transformation paradigm, copied from another UML paradigm or
attached as a library. These metamodels descrbe the input and output models.

• 16

Figure 14 Metamodel of Hierarchical Concurrent State machine using UML class diagrams

Figure 15 shows a UML class diagram that represents the domain of Hierarchical
Concurrent State Machines (HCSM) and Figure 15 shows the metamodel of a Finite State
Machine (FSM).

Figure 15 Metamodel of a simple finite state machine

There is problem: maintaining references between the different models/graphs. During
the transformations it is usually required to maintain temporary information that may
correspond to both paradigms. To illustrate the point let us consider a very simple
transformation that needs to transform models conforming to one domain to another. For
sake of simplicity we consider that the source domain has only one vertex type called V1
and one edge type called E1. The target domain has vertex type V2 and edge type E2.
The transformation’s aim is to create a vertex and edge in the target set for each vertex
and edge in the source set.

A simple algorithm could first create a target vertex for each source vertex and then
create the edges. To create a target edge e2 that corresponds to source edge e1 we need to
find the vertices in the target that correspond to the source vertices e1 is incident upon.
This information needs to be saved in the first phase of the transformation for use in the
second phase, and can be considered as maintaining reference between two graphs. There
are other examples where the referencing is not that easy, for example, in a
transformation that determines the cross product of two sets of vertices to generate a new
set of vertices. In this case each pair of source vertices should reference a single target
vertex.

This problem is tackled in GReAT by using an additional domain to represent all the
cross-domain links and temporary links. In GReAT users can create a Package for
describing the cross-links. In the package the users can drag references to classes in other
packages and create new association types. For example, Figure 16 shows a metamodel
that defines associations/edges between HCSM and FSM. The State and Transition are

• 17

classes from Figure 14 while the FiniteState and FiniteTransition are classes from Figure
15. This metamodel defines three types of edges. There is a refersTo edge type that can
exist between State and FiniteState and between Transition and FiniteTransition.
Another edge type associatedWith is defined and it can exist between State objects.

Figure 16 A metamodel that introduces cross-links

Cross-links can be defined not only between different domains but can also be used to
extend a domain to provide some extra functionality required by the transformation. By
using a different domain/package for cross-links we are able to specify a larger,
heterogeneous domain that encompasses all the domains and cross-references.

During the transformation the users can create modify and delete instances of the cross-
link types in the same manner as they deal with other vertex and edge types.

5.2. Rule
A rule in the transformation language is defined as a 9-tuple

R = (pattern, action, input interface, output interface, guard, attribute mapping, match
condition)

Where,

Pattern is a graph with pattern vertices and edges.
Action is a mapping of pattern vertices and edges to {Bind,

CreateNew, Delete} the set of actions
Input interface is a set of distinct input ports that can receive graph

objects from previous rules
Output
interface

 is a set of distinct output ports that will transfer graph
objects of this rule to the next rule.

Guard is an OCL expression that’s evaluates on a match of the
LHS pattern to return true or false. If this expression is
true only then will the rule fire for that match otherwise
the next match will be considered.

Attribute
mapping

 are arithmetic and string expressions that are evaluated
for each valid match to generate the values of edge and
vertex attributes.

Match can be either “all matches” or “any match”. If it is “all

• 18

condition matches” for each input packet the rule will find all the
matches and for all the valid matches it will execute the
effecter. If it is “any match” then for each packet the rule
will find the first valid match and call the effecter for
that match. The match chosen is non-deterministic.

Figure 17 shows an example rule. The rule contains a pattern graph, a Guard and an
AttributeMapping. Each object in the pattern graph refers to a class in the heterogeneous
metamodel. The semantic meaning of the reference is that the pattern object should match
with a graph object that is an instance of the class represented by the metamodel entity.
The default action of the pattern objects is Bind. The New action is denoted by a tick
mark on the pattern vertex (see the vertex StateNew in figure). Delete is represented
using a cross mark (not shown in figure). The In and Out icons in the figure are used for
passing graph objects between rules and will be discussed in detail in the next section.

Figure 17 An example rule with patterns, guards and attribute mapping

GReAT relies on UML metamodels for defining patterns. Furthermore, the patterns are
also specified in (a superset of the) UML syntax and since the modeler uses UML for
metamodeling, as it was more intuitive to describe the rules also in UML. By making the
user reference each pattern object we can enforce the consistency of the patterns and thus
the consistency of the transformations.

• 19

Figure 18 Start of a rule fire sequence with 2 input packets

Figure 18 till Figure 22 shows the execution of a rule. In Figure 18 we have two
incoming packets to the rule. The execution of the rule will start with the first packet. The
first packet will be used to produce matches for the pattern. Figure 19 shows the
production of two matches from the first packet. Each match is tested wit the guard
expression and only the matches that have the guard evaluate to true are kept. Then for
each match new objects are created and matched objects deleted according to the rule
specification. After the creation and deletion of the objects the attribute mapping is
invoked that add and modifies values of attributes. The pattern objects connected to the
output port are then used to create output packets base on the matched and/or created
graph objects as shown in Figure 20. The same process is repeated with the second
packet.

• 20

Figure 19 Rule has a set of matches for first input packet

Figure 20 a set of output packets generated for each match

Figure 21 matches for the second input packet

• 21

Figure 22 final state after the execution of the rule

5.3. Sequence of Rules
After having a clear idea of the execution of a single rule we can think about the
execution of a series of rules. In the transformation language execution is mainly
sequential. Thus if a rule is coupled to another rule they will execute sequentially. Thus,
in Figure 23 rule 1 will fire first to consume all its tokens and produce a number of output
tokens. Then rule 2 will fire to consume all its input tokens to produce a number of output
tokens.

(a)

(b)

• 22

(c)
Figure 23 Firing of a sequence of 2 rules

5.4. Hierarchical Rules
There are two types of hierarchical rules.

 Block

 For Block

Both the hierarchical rules have the same semantics with respect to rules connected to
and from it. Thus if in Figure 23 the rules 1 and 2 were hierarchical even then they would
have has the same action as described there. The semantics within a hierarchical rule
differs.

A block is a container that encapsulates a number of rules. The block has the semantics
that it will push all its incoming packets through to the first internal rule. So it is very
similar to the regular rule semantics.

The output interface of the block can be attached to the output interface of any internal
block or the input interface of the block. In other words the block can send output packets
from any internal rule or pass its input packets as output. However, the output interface of
a block must be attached to exactly one interface and it cannot be attached to two
different interfaces. Figure 24 shows the execution of rules within a block.

(a)

• 23

(b)

(c)

(d)

(e)
Figure 24 Rule execution of a Block

Figure 25 illustrates the case when the output interface of a block is connected to the
input interface of the same block.

• 24

(a)

(b)

(c)

(d)
Figure 25 Sequence of execution within a block

The “for block” has different semantics within. If we have n incoming packets in a “for
block” then the first packet will be pushed through thru all its internal rules to produce
output packets and then the next packet will be taken. The semantics are illustrated with
the help of an example in Figure 26.

(a)

• 25

(b)

(c)

(d)

(e)

(f)

• 26

(g)

(h)
Figure 26 Rule execution sequence of a "for block"

Similar to the block the output interface of the “for block” can also be associated with the
input interface of any internal rule or the input interface of itself.

5.5. Branching using test case
There are many scenarios where the transformation to be applied is conditional and a
branching construct is required. Thus the branching construct supported by us is a test
case.

The external semantics of a test case is similar to any other rule. When fired or executed
it consumes all its input packets to produce some output packets. In Figure 27 a test is
shown that has two cases. The Test has one input interface and two output interfaces
({OR1, OP1} and {OR2, OP2}). When the test is fired each incoming packet is tested
and placed in the corresponding output interface.

(a) (b)
Figure 27 Execution of a test case construct

The test can have 1..* cases. Each case is a rule with no output pattern and no actions. It
contains an LHS pattern a guard condition and an input and output interface. If the LHS

• 27

pattern has a match the case succeeds and the input packet to the case is passed along. If
the pattern has no matches then the test fails. Alternatively if the match doesn’t satisfy the
guard condition even then the case fails. Figure 28 shows a case with a successful
execution. The input packet has a valid match and so the packet it allowed to go forward.

(a) (b)
Figure 28 Execution of a case

When a test has many cases then each input packet is checked with each case to see
which cases are satisfied for the particular packet and the packet is placed in the output
interface of each satisfied case. The order of testing cases is derived from the physical
placement of the case within the test. The cases are evaluated from top to bottom. If there
is a tie in the y co-ordinate then the x co-ordinate is used from left to right. There fore the
comparison is made ascending order of y and if two y are same then in ascending order of
x. The case also has another attribute called the cut. When enabled it means that if the
case succeeds for a given packet then the packet should not be tested with the other cases.

(a) (b)

• 28

(c) (d)

(e)
Figure 29 Execution of a test condition

In Figure 29 the execution of a test is shown. An input packet is replicated for each case.
Then the input packet is tried with the first case, it succeeds and is copied to the output of
the case. Then the packet is tried with the second case, this time it fails and the packet is
removed. Finally after all input packets have been consumed the output interfaces have
the respective packets.

5.6. Parallel Execution
When a rule is connected to more than one rule or when there is a test condition with
more than one path then it is called as the parallel execution. The parallel execution
semantics is defined such that the different parallel paths can execute exclusive to each
other and thus the order of execution of these paths are not defined. If executed on a
sequential machine a particular path will be chosen and executed completely before the
next path is chosen.

• 29

(a)

(b)

(c)

• 30

(d)

(e)

(f)

(g)
Figure 30 A parallel execution sequence

Figure 30 shows the execution sequence for parallel execution. Here the parallel
execution is caused because of a test condition but it could also have been a rule
connected to more than one other rule. After the branch there are packets at both the
output interfaces of the test. Thus both rule 2 and rule 4 are ready to fire, in this case rule
2 is chosen and fired, followed by the execution of following rules. This ends at rule 3.
Then rule 4 & 5 are fired.

• 31

5.7. Global Container
The control flow language of GReAT specifies an execution order of the elementary
transformation steps. A transformation step always starts the pattern matching with an
initial context. This context is passed along from rule to rule via ports during the
transformation, similar to parameter passing in procedural languages. The main weakness
of this approach is that the programmer needs to specify the context passing through
several rules, even if the context is actually used only in one remote, non-adjacent, step.

To further simplify development, we have introduced the concept of the global container.
The input(s) and the output(s) of the transformations reside in containers that hold objects
and links of the input and output graphs. These containers are selected at the beginning of
the transformation, and each production matches/deletes/creates objects within these
implicit containers.

The general idea of the global container is that the objects it contains have global scope;
that is, they are accessible throughout the whole transformation, and it is not necessary to
pass them along in the context. Starting from these globally available objects, the
programmer can have access to shared data variables and various portions of the host
graph without having to obtain them from an input port.

GReAT containers are temporary, non-persistent objects that exist only during the
transformation. It is the programmer’s job to define the “syntax” (i.e. the type-graph) of
the container by drawing a UML class diagram, much like when defining the input and
output domain(s) of the transformation. The programmer is free to specify as many global
containers as he wants, as GReAT will manage the single instance of each container
within the rules.

One can create an arbitrary type system for the global container, including defining new
classes with attributes, associations, etc. with all the capabilities of a standard UML class
diagram. The only globally accessible object per container is one instance of the root
type. From this single global root object, other model objects can be reached via pattern
matching, whose type in turn can be part of any type system defined in the
transformation, such as the source or target domain. Data variables, like the ones in
ordinary programming languages, can be modeled with UML class attributes in GReAT.
Global data variables can be modeled as attributes of global class attributes.

Global containers are most useful in large transformations, when they can eliminate a
large portion of context passing, or recurring complex pattern matching. One example is
generating code from models, where components are used to model the functional
decomposition of a system. Suppose that the transformation consists of several rules, and
the leftmost and rightmost rules are as shown in Figure 31. Furthermore suppose that the
model contains hundreds of components, and some of them were incorrectly named for
code generation (e.g. their name begins with a number). We need to perform multiple
operations on the set of these incorrectly named components in different transformation
steps. The number of such components is negligible compared to the total number of
components, so it makes sense to reuse the pattern matching results to cut down on the
search time. However, it is also inconvenient to specify context passing over dozens of

• 32

rules, especially when the context is used only in the last rule. To save the programmer
from doing the excess work, we suggest using the global container feature.

Figure 31 Using global containers

The left rule in Figure 31, (1) associates components that have invalid names with a
global object “NSRootObject”, (2) counts them using the counter attribute of “NSRoot”.
The right rule, which can be far away, in a distant part of the transformation program,
renames these selected components to conform to the target language naming
conventions. Notice that the pattern matching finds the components through the
“NSRootObject-Component” association starting from “NSRootObject”, as there is no
pattern containment relationship specified starting from “RootFolder”.

5.8. Sorting
The pattern matching in GReAT is deterministic in the sense that it returns the set of all
the valid matches for a given pattern, and that set of matches will always be the same for
a given pattern and host graph. Pattern matching is non-deterministic in the sense that the
order of the elements (matches) in the set may vary between different executions. This
kind of non-determinism is not acceptable in some model transformations, where certain
elements need to be created in a fixed order. One example when deterministic order of
matches is compulsory is interpreting hierarchical concurrent state machines, e.g.
Matlab’s StateFlow. The operational semantics of StateFlow prescribes that parallel
(AND) states evaluated and executed from left to right and top to bottom. In other words,
every concurrent (AND-decomposed) compound state has multiple active sub states, and
is responsible for executing all its children in this specific order during performing a state
machine step.
Consider an example of a StateFlow to C code generator in GReAT. The code generator
essentially produces a C function definition for each StateFlow state. For concurrent
compound states, the generated C function is responsible for calling the functions
representing the child states. For example, suppose that the concurrent state “Parent”

• 33

contains three parallel states from left to right and top to bottom: “ChildA”, “ChildB” and
“ChildC”. Then the generated state execution function should look like:

 void Parent_exec() {
 ChildA();
 ChildB();
 ChildC();
 }

Note that the first “ChildA” is executed, then “ChildB” and last “ChildC”, and any other
state evolution order does not conform to the StateFlow operational semantics. Consider
that we have a metamodel that captures the abstract syntax of a stylized subset of C.
Then, during the transformation steps we create model elements representing C code
segments. The resulting model is then printed out into C text format in a post-processing
step.

Figure 32 Create State execution functions

Figure 32 shows one solution for concurrent state code generation. The specified pattern
finds all children of “ParentState”, and the associated state function definition for
“ParentState” (through a cross link generated earlier in the transformation). Then those
matches with sequential (non-concurrent) compound states are discarded by evaluating
the guard condition. Finally, state execution function definitions and function callers
referring to the functions definitions are created in the last step. The problem with this
pattern specification is that the function callers are created in a random order, so nothing
will enforce the correct execution order of the parallel states. In the case of the previous
example, if the pattern matcher returns with the set: {(Parent, ChildB, Prg, ParFunc),
(Parent, ChildA, Prg, ParFunc), (Parent, ChildC, Prg, ParFunc)}, then the generated code
will look like:

 void Parent_exec() {
 ChildB();
 ChildA();
 ChildC();
 }

Clearly, we need to specify an ordering of parallel states, based on the “Order” attribute
of the “ChildState”-s. In other words, we want to reorder the set of matches using some

• 34

ordering criteria, e.g. sort the matches based on the “Order” attribute of “ChildState”-s.
This sorting step should take place after pattern matching, or even after the effector, so
that newly created objects can also be reordered. This entails that the sorted matches can
be used only in subsequent transformation steps. The sorting step is the last operation
executed before leaving the rule.
The GReAT programmer can specify sorting by setting the attribute “Compare function”
of an output port in a rule. He first specifies the sorting criteria in the form of a C++
compare function in a common placeholder for reusable routines in the transformation.
Then he can refer to this compare function by name throughout the transformation. In
Figure 33 , the compare function “StateOrder” is used to order the parallel states. The
compare function is a Standard C++ predicate taking two arguments, the two objects to
compare. An example compare function is shown in Figure 34 . The programmer needs
to specify only the function name and the body, the function signature is automatically
generated.

Figure 33 Create ordered State execution functions

During the sorting step, matches produced by the pattern matching are reordered by
sorting the objects associated with the sorting pattern object. In our example, {(Parent,
ChildB, Prg, ParFunc), (Parent, ChildA, Prg, ParFunc), (Parent, ChildC, Prg, ParFunc)}
is reordered yielding {(Parent, ChildA, Prg, ParFunc), (Parent, ChildB, Prg, ParFunc),
(Parent, ChildC, Prg, ParFunc)}. These matches are then passed along in the identical
order to the next rule as shown in Figure 33 . Finally, “StateFunction”-s and
“StateFunctionCall”-s are created for each match in the correct order, ensuring that the
generated C function will execute the parallel states in the correct order.

template <class T>
bool StateOrder(const T& lhs, const T& rhs) {
 return lhs.Order() < rhs.Order();
}

Figure 34 Predicate for comparing States by using the Order attribute

• 35

5.9. Distinguished Merging
In graphical languages, subsystems typically expose their interfaces with the help of
ports. For example, in signal flow languages, data ports indicate the types of signals the
component accepts. The programmer specifies the signal flow by connecting the output
ports of the source component to the input ports of the destination component. As the
interface gets larger, the number of connecting ports increases rapidly. Connecting each
pair of source-destination ports manually becomes cumbersome and tedious, thus the
process lends itself to automation.

This problem can be regarded as a model transformation problem: new signal flow
connections need to be added between selected ports specified by some criteria. The
pattern matching algorithm must find and return pairs of ports that need to be connected.
The search space is the cross product of all output ports of the source by all input ports of
the destination. For example in Figure 35, the total search space is {(O1,I1), (O1,I2),
(O1,I3), (O2,I1), (O2,I2), (O2,I3), (O3,I1), (O3,I2), (O3,I3)}.

Figure 35 The Connecting Ports Problem

Of course, the pattern matching cannot figure out automatically which are the connecting
ports, so some restricting criteria are needed to specify the acceptable combinations. A
simple criterion can be given using the physical layout ordering of the ports: the topmost
output port should be connected with the top most input port, the second output port from
the top should be connected with the second input port, and so on. Using this criteria the
search space is restricted to {(O1,I1), (O2,I2), (O3,I3)}, and this set indeed represents the
connecting ports.

We need to find a distinguished subset of matches in the original search space. The two
most prominent properties of the elements in the subset are (1) each port occurs only
once in the set (2) the ports are sorted: they are paired up to form elements in a specific
order. The selection algorithm, called distinguished merging, is outlined below:

Name: Distinguished merging
Inputs: Total cross product of input and output ports, sorting criteria
Output: Distinguished subset of input and output ports, where the elements
represent the wanted connections

1. Break apart the elements of the total cross product and create two
corresponding sets for input and output ports.

2. Sort the elements of the input port set and output port set independently
using the sorting criteria.

3. Remove duplicates of consecutive elements with the same value.

• 36

4. Compute the distinguished subset, by arranging the elements vertically
into pairs.

Figure 36 demonstrates the algorithm with the ports shown in Figure 35, and sorting ports
based on their vertical position.

Input: {(O1,I1), (O1,I2), (O1,I3), (O2,I1), (O2,I2), (O2,I3), (O3,I1), (O3,I2), (O3,I3)}
After step 1: {O1,O1,O1,O2,O2,O2,O3,O3,O3},{I1,I2,I3,I1,I2,I3,I1,I2,I3}
After step 2: {O1,O1,O1,O2,O2,O2,O3,O3,O3},{I1,I1,I1,I2,I2,I2,I3,I3,I3}
After step 3: {O1,O2,O3},{I1,I2,I3}
After step 4 & output: {(O1,I1), (O2,I2), (O3,I3) }

Figure 36 Connecting Ports

Distinguished merging can easily be extended to multiple sets. Suppose we want to
execute the algorithm on N sets. Then we have an input set containing N-ary tuples as
elements, which is broken down into N individual sets during step 1. After sorting and
creating ‘unique’, we form N-ary tuples by taking the elements of each set vertically.

Note that the algorithm fails if the number of elements of the individual sets differ after
step 3. Indeed, step 4 needs sets of the same size to complete forming tuples, otherwise it
will produce incomplete tuples. In GReAT, it is the user’s responsibility to ensure that
each set will contain the same number of elements after step 3. For the port-connection
example this means that the source must have as many output ports as the destination has
inputs.

Also note that the algorithm does not necessarily select a subset in the input, but rather
computes new elements out of the constituent parts, i.e. the graph objects. For example,
consider the following input {(I1,O2),(I2,O1)}. The algorithm output is going to be
{(I1,O1),(I2,O2)}, demonstrating that neither of the elements of the distinguished subset
is contained in the input set. Instead, graph objects have been reorganized or merged to
form new elements, hence the name distinguished merging.

Figure 37 Rule that selects connecting ports

Distinguished merging is performed in the last phase of the rule execution. The input set
is provided by the pattern matching, but the sorting criteria must be specified by the
programmer. He can provide the sorting criteria by compare functions, as in the case of

• 37

sorting, only that all the output ports must have a compare function specified, so that each
set can be sorted and made unique during steps 3 and 4, respectively. Figure 37 shows a
pattern that selects “OutputPort”-s and “InputPort”-s in “BaseComponent”-s. The
predicate “YPosCmp” used as a compare function for both output ports (the programmer
can specify different compare functions, of course). In addition, a rule attribute
“distinguished” must be set to true (not shown in the figure). The selected component
ports are connected in a subsequent rule.

Figure 38 Rule that selects adjacent component pairs

It is interesting that distinguished merging can also be used for selecting the source and
destination components in another rule earlier in the transformation. Figure 38 shows a
rule that selects component pairs that are laid out horizontally right next to each other.

Input:
{(C1,C2),(C1,C3),(C1,C4),(C2,C1),(C2,C3),(C2,C4),(C3,C1),(C3,C2),(C3,C4),(C4,C1),(C
4,C2),(C4,C3)}
After Guard: {(C1,C2),(C1,C3),(C1,C4),(C2,C3),(C2,C4),(C3,C4)}
After step 1: {C1,C1,C1,C2,C2,C3},{C2,C3,C4,C3,C4,C4}
After step 2: {C1,C1,C1,C2,C2,C3},{C2,C3,C3,C4,C4,C4}
After step 3: {C1,C2,C3},{C2,C3,C4}
After step 4 & output: {(C1,C2), (C2,C3), (C3,C4)}

Figure 39 Selecting Source-Destination Rule Pairs

Figure 39 shows how the rule works. Let us denote the four input components to connect
as C1, C2, C3 and C4. The pattern matching first finds all possible ordered pairs from the
set of input components (there are 4!/2!=12 such pairs). To ensure that component
“From” lays left to component “To”, we utilize the compare function “XPosCmp” in a
guard condition “From_is_left_to_To”, which discards all pairs where “From” is right to
“To”. Finally, the distinguished merging gets rid of all non-adjacent pairs. These source-
destination component pairs are then passed along one-by-one to the rule depicted in
Figure 38 shown above.

• 38

5.10. Match-any-association
The match-any-association feature is useful when you do not want to specify certain
attributes of a pattern association. You have the option of not specifying the association
role names, and/or the type of the association class object connecting the peer objects.
There are two respective language constructs you can use to match any association, and
their semantics are slightly different. The first is called MatchAnyAssociation, and it is
Connection object, i.e. it is represented by a link between pattern objects. If you connect
two pattern objects, GME pops up a dialog, asking for the type of the connection you
want create between the two (see Figure 40).

Figure 40 Select MatchAnyAssociation for list of connections

If you select MatchAnyAssociation from the list, a corresponding connection will be
created between the two objects, decorated with <<ANY>> at the middle of the line.

Figure 41 MatchAnyAssociation notation

The semantics of MatchAnyAssociation is to find out if two objects are connected or not,
irrespective of what association class is involved and what are the role names. The rule in
Figure 41 checks if ClassA is connected to ClassB, or not. If yes, it will return with one
match, if not, it will return with empty match (no match found). The important point to
remember is that no matter how many connections exist between the two objects, the
pattern matching will find maximum one match.

• 39

The other language feature is called ConnectorAny, and it is a GME atom that you can
simply drag-and-drop from the Part Browser into the rule definition, much like any other
GME atoms. If you use ConnectorAny, you must still specify the association class
connecting your pattern objects, but not the association role names. ConnectorAny is
depicted as a connector decorated with the word <<ANY>> above the dot (see Figure 42)

Figure 42 ConnectorAny notation

The semantics of ConnectorAny is to find all associations connecting the peers through
the specified association class, but irrespective the role names. The rule in Figure 42
checks if ModelA is connected to ModelB through association class Connection. This
feature is particularly useful for matching GME bidirectional associations. GME defines
bidirectional associations as connections with blank role names. However, the underlying
architecture in GReAT assumes that all connections have non-empty role names. To
overcome this limitation, a pattern of UML classes and relationships is generated each
time a bidirectional association is encountered in a GME paradigm. Figure 43 shows the
UML representation of a bidirectional association specification between ModelA and
ModelB. The rule in Figure 42 finds all connections of type Connection connecting
ModelA and ModelB, irrespective of the direction of the connection. The important point
to remember is that ConnectorAny finds as many matches as connections exist between
the peer objects.

Figure 43 UML class diagram representing Bidirectional associations

• 40

5.11. Group Matches
After all the matches have been found for the pattern described in the expression, the
actions taken on the pattern objects can be performed based on a match or based on a
group of matches.

The difference between these two execution styles is the representation of Group in the
expression. A rule without a Group element will be executed normally, which is for each
match, binding them with the corresponding pattern objects and performing the defined
actions on the one-to-one binding objects. For a rule with a Group element, rather than
each single match binding, all the matches will be merged into different subgroups first
based on the grouping criteria defined by the group, and then the actions will be executed
for the objects and links which belong to these groups of matches.

Group is implemented using the Set concept in GME. A group can have pattern objects
and pattern links as its members. Groups could have composition relationship with other
pattern classes. Groups have two attributes that define the match grouping criteria and the
actions for the objects and links in the group. They are:

• Criteria for grouping matches: This is an OCL expression that evaluates two
matches of the pattern to determine whether they should be grouped together and
returns a Boolean value of True or False.

• GroupAction: After the group is computed, there are four different actions that
the objects and/or links in the group can play. They are:

- Bound: No action will be executed on the objects and/or links in the
group. For other objects’ actions, they will be executed after the group is
computed from the matches, and not from the direct single match binding.
With this type of group action, there is no composition relationship for the
group element.

- Move: All the objects and/or links in this group will be moved to another
target parent container. With this type of group action, there must be one
and only one composition relationship for the group element, which
designates the target parent.

- Copy: All the objects and/or links in this group will be copied into another
parent. With this type of group action, the Group elements could have
more than one composition relationship with other pattern classes.

- Delete: All the objects and/or links will be deleted. With this type of
group action, there is no composition relationship for the group element.

The following example will illustrate how to use Groups. Figure 44 shows a
transformation rule with a Group and Figure 45 shows the members of this Group in the
GME set mode. In this rule, the Group element has BehaviorUnit1 and BehaviorUnit2 of
class FSM, and association class ArgMap as its members. The action of the Group is
“Move”, which means move the objects bound to these three pattern classes in the group
to a new created “newCF” object. The execution order is:

Step 1: Pattern matching: Find all matches for the pattern described in the rule and
apply the Guard to filter out the undesired matches. The code in the Guard looks like:

• 41

return (BehaviorUnit1.id() == BehaviorUnit2.id());

This will return all matches in which the two connected FSM objects have the same id.

Step 2: Grouping matches: Apply the grouping criteria shown as following:
return (the_BehaviorUnit1.id() == other_BehaviorUnit.id());

With this grouping criteria, it will form a connection chain in which all the FSM objects
have the same id. (Notice: for this example, each match has a pair of FSM objects, while
the group could contain more than two FSM objects and it is not restrained to the single
bindings).

Step 3: Create new objects: After the groups are formed in Step 2, a new
CompositeFunction type object will be created for each group.

Step 4: Move group: All the FSM objects connected with each other with ArgMap
association in one group will be moved to the corresponding newly created
CompositeFunction object.

Figure 44 A rule with Group

• 42

Figure 45 Members of Group

5.12. Termination
A rule sequence is terminated either on a rule having no output interface or on a rule with
having an output interface but not producing any packets.

Thus if the firing of a rule produces zero output packets then the rules following it will
not be executed. Hence in Figure 30 if rule 4 produced zero output packets then rule 5
would not have been fired. However, the there should be a construct to sequence rules
without having to bind the ports.

5.13. Embedded with Customized Code
The final item to discuss is the embedded transformation rules with customized code. In
order to provide more complicated and flexible operations within the transformation rule,
user can write its own code with UDM APIs to manipulate the bound objects in Guard
and AttributeMapping. For example, in the following transformation rule,

• 43

if we want set the name for the new created object of Queue, then in the attribute panel
of AttributeMapping, input the following code:

Queue.name() = (string)InputPort.name()+”_Queue”;

Then after the new object of Queue is created, the above code will be executed and the
name will be set.

Also users are allowed to link the transformation rule with predefined libraries and other
code. To do so, users are required to specify such library files, include files and
corresponding directories in configuration model (please refer 9.1).

5.14. Code Library
The CodeLibrary is a place for specifying executable cpp code fragments. To insert a
code library, right click on the “Config” folder, and select “Insert Mode->CodeLibrary”.
Currently, the CodeLibrary is used to compare functions as seen in the Sorting section
(please refer 5.8). The compare function can also be called from the and Guard
AttributeMapping objects. Future support will be added so that reusable code
snippets can be added to the CodeLibrary, and called from the and Guard

 objects. AttributeMapping

If UDM features are used, you are required to specify the UDM_DYNAMIC_LINKING
preprocessor directive in the project options. This is needed because the generated files
are linked against UdmDll(d).lib. You must also conform to the library naming
convention of using the 'd' suffix for debug libraries. The generated project file links with
<your-library>d.lib for Debug configuration, and <your-library>.lib for Release
configuration.

5.15.

• 44

User Code libraries

You can use the User Code Library feature to define additional include header files,
directories and library files, directories in your transformation. You typically want to
specify additional include and/or library files to refer to your user defined types, routines,
etc. from a Guard or AttributeMapping code. To create a User Code Library, simply drag
& drop a UserCodeLibrary atom into an open CodeLibray model.
You can set the following attributes of a UserCodeLibrary:

• Include files?: the name of the C/C++ include header file, or files you want to
include in your transformation.

• Library files?: the name of the C/C++ statically linked library file, or files
you want to link against your transformation.

• Include directories?: path, where the compiler should look for include files
• Library directories?: path, where the linker should look for library files.

The following formatting rules apply when specifying UserCodeLibrary attributes:

1. All files and directories are separated by comma (,) or alternatively
semicolon (;) characters (they can be used interchangeably)

2. Directory names can contain space characters, but file and directory names
cannot contain separator characters, ie comma (,) or semicolon (;).

3. File names cannot contain directories; you must specify the location of the
files in the corresponding directory settings.

4. Include files must be enclosed in either brackets (<>) or quotes (“”). If you
do not use quotes or brackets, then quotes are assumed by default.
E.g specifying “h1.h”,<h2.h>,h3.h will generate:
 #include “h1.h”
 #include <h2.h>
 #include “h3.h”

5. When specifying library files, do not specify the .lib extension. The library
name will be automatically suffixed with a ‘d’ character for debug
configuration, and with .lib extension for both debug and release
configurations. E.g specifying mylib1,mylib2,wrong.lib will generate:
 ”mylib1.lib mylib2.lib wrong.lib.lib” for release configuration
 “mylib1d.lib mylib2d.lib wrong.libd.lib” for debug configuration

6. You can specify either absolute path or relative path information for both
directories settings. If you specify a relative path, it will be converted to an
absolute path by computing the absolute path starting from the location of
the configuration file (which is always absolute).
E.g specifying: “C:\Program Files\Isis\GReAT”,my subdir,”..\my subdir2”
and the config file name is: “D:\work\config.mga” will generate:
 “C:\Program Files\Isis\GReAT”,my subdir ”D:\work\my subdir”
 “D:\work\..\my subdir2”
Using quotes around directories is optional.

• 45

6. GR Engine
The Graph Rewrite Engine (GR Engine) is a fully meta-model-driven interpreter which is
developed to take in the configuration file, get all meta-models dynamically for accessing
input and output models, apply the transformations to input models, and directly generate
the output model.

GReAT provides two different usages of GREngine. It can either be used as command
line or be invoked as interpreter for transformation model.

6.1. GRE.exe
6.1.1. NAME
 GRE.exe – directly use configuration file as input to generate output model

6.1.2. SYNOPSIS
 GRE <configurationFile> [<fileSpec>] ……

<configuraitonFile> the name of the configuration file (“.mga” or “.xml”)
generated by the interpreter GenerateConfig on the
GReAT configuration model created with GReAT
language.

< fileSpec > the string to specify the file with file Id and file
name. If the file mode is read only, or write only, or
read and write, the format is:
 FileID=FileName
If the file mode is read, write and copy, the format
must be:
 FileID=FileName1;FileName2
FileName1 will be used to read in model, FileName2
will be used to write and copy model.
If the FileName contains white space characters, then
the use of quotes “ ”is obligatory.

For more info read Chapter 10

-d print out run time transformation rule name during
execution

-dv print out run time transformation rule name, input
packets, pattern matches, output packets info during
execution

6.1.3. SAMPLE
 GRE.exe SF2FSF.mga SF=“SFInput.mga” FSF=“FSFOutput.mga”

 SF2FSF.mga : configuration file

 SF, FSF : file ID

• 46

 SFInput.mga, FSFOutput.mga : file name

6.1.4. DESCRIPTION
GRE takes in the <configurationFile> to generate the output model directly. The other
arguments <fileSpec> are optional. If there are <fileSpec>s following
<configurationFile>, GREngine will use the file provided in <fileSpec> instead of the
corresponding InputFile with the same FileID in <configurationFile>. If there is no
InputFile specified in <configuratioFile>, user must provide the <fileSpec> as input
arguments. The order of multiple <fileSpec> can be arbitrary.

6.1.5. FILES

GReATConfig.dtd If the <configurationFile> is XML format (“.xml”), it
must compliant with this DTD.

6.2. InvokeGRE.dll
6.2.1. NAME
InvokeGRE.dll – GME model interpreter used to generate the output model and update
the configuration file.

6.2.2. USAGE
Register and run the interpreter within GME/ UMLModelTransformer. The interpreter
can (1) run GR Engine with the configuration file and (2) update the current
configuration model.

If there is “NoPrompt” atom in the configuration model, then the following dialog will
pop up:

If there is no “NoPrompt” atom in the configuration model, user can give the file path,
and choose the task through the following dialog:

• 47

• 48

7. Code Generator
Code Generator is a GR to C++ translator utility, which can be used to generate C++
code from your GR rules.

What is in the package

1. bin/CG.exe - Code Generator command line executable

2. UMLModelTransformer/CodeGenerator.dll - Code Generator GME interpreter
add-on

3. etc/GR.xsd - must be in path to execute CG.exe

4. etc/InputFileRegistry.h - must be in path to compile output

5. etc/GReATSort.h

Command line tool usage

You can execute CG.exe from the command prompt.

 CG.exe <GenFileName> <ConfigFileName> [-m|-t]
GenFileName - the generated rewriting code file name base.
ConfigFileName - GReAT Configuration information file.
[-m] Generate the main.cpp file only.
[-t] Generate the translator files only.
[-p] Generate Visual Studio projects files also.
[-e] Generate transformation executable file (Compile transformation)

Examples:

CG.exe SF2FSF SF2FSFConfig.mga
CG.exe generated\HSM2FSM HSM2FSMConfig.mga -t

The translator files consist of the code which perform the transformation specified in
your rules. The generated main.cpp file drives this translator code by opening and/or
creating the models related to the translation and assigning input objects to the start
translation rule.

GME interpreter usage

Just click on the icon on the GME interpreter toolbar. Be sure, that the configuration
is saved prior to executing the Code Generator interpreter. (See more info in Chapter 8.).
If you did not specify runtime info in your configuration, the main.cpp file will not be
generated. The translator files are always generated.

Code Generator specific configuration data:

• 49

1. Filename base for Code Gen: the generated rewriting code file name base.
Example if you give Gen\MyTransformation, then CG generates the following
files:

 .\Gen\ MyTransformation.cpp

 .\Gen\ MyTransformation.h

 .\Gen\ MyTransformation_main.cpp,

 .\Gen\MyTransformation.vcproj

where .\Gen is relative to the directory of the configuration file.

2. Meta code generation mode for Code Gen: This is an enumeration attribute that
controls how the translator files are linked with the generated paradigm-specific
API files and another file containing Attribute Mapping / Guard code. The CG
can create the following C++ static link libraries from these files as part of the
code generation process.

 [GR filename]_Static<_D>.lib contains the Attribute Mapping / Guard code.

 [GR filename]_Meta<_D>.lib contains the generated paradigm-specific API files.

 where [GR filename] is the GR file which is output of the GenerateGR interpreter,
 and the _D suffix is added for debug libraries.

• No Library (Source code) – Code generator does not create any libraries. It is
the task of the user to compile and link the paradigm-specific API files with
the compiled translator files, whereas the Attribute Mapping / Guard code is
printed out directly into the translator .cpp file.

• Static Link Library Debug Configuration – CG will create [GR
filename]_Static_D.lib and [GR filename]_Meta_D.lib. The user’s job is to
compile the translator files in debug configuration, and then link the resulted
object code with these libraries.

• Static Link Library Release Configuration - CG will create [GR
filename]_Static.lib and [GR filename]_Meta.lib. The user’s job is to compile
the translator files in release configuration, and then link the resulted object
code with these libraries.

The libraries are regenerated each time after you invoked the GReAT Master
Interpreter. Note that it is a time consuming task to compile and link the source
files, but an inevitable task if you want to execute the generated translator files.
CG supports this library creation feature only to simplify and accelerate the
process of getting the generated translator files compile (see 7.1).

• 50

TranslatorLog.txt – This is log file created by Code Generator consisting helpful
information of the generating process. Compiler warnings and errors are reported
here.

7.1. How to compile the generated files
A VC project file is generated by the Code Generator. You can open this .vcproj file in
Visual Studio and choose “Build Solution” to compile it. If Visual Studio prompts you to
save the Solution, select a name and save the solution to continue the build.

If you set the attribute “Meta code generation” to “Static Link Library”, then you will be
able to build only the debug/release configuration depending on your settings.

7.2. How to execute the generated files
If the compile was successful, the resulted .exe can be executed by either specifying the
-d default switch, or specifying non-default input files as command line arguments. For a
full example of the usage of command line arguments please see Chapter 10. For every
.mga input file the corresponding meta models must be registered in GME, and for every
.xml input file the corresponding meta dtd files must be in path.

• 51

8. GR Debugger
GRDebugger provides an integrated debugger to help locate bugs in a GReAT program.

GRDebugger has all the basic features that any programming language’s debuggers could
have: you can execute your GReAT program step by step, i.e. rule by rule. You can have
breakpoints at certain point of the program, so the transformation can be paused at any
point the values to peek the values of variables.

8.1. Overview: The Debugging Interface
Debugging is the process of correcting or modifying the code in your GReAT project so
that your project can run smoothly, act as you expected, and be easy to maintain later.

GRDebugger provides a tool to help of tracking down errors in the code and program
components.

The debugger interface provides menus, toolbars, dialog boxes and windows.
Occasionally the debugger is paused in break mode, meaning the debugger is waiting for
user input after completing a debugging command (like break at breakpoint, step
into/over/out, break at exception).

8.2. Starting the Debugger
8.2.1. To start the application

From command line,

 Mode Features

Debug mode grd.exe configFileName [-d] The
application brings up the debuggers
graphical user interface.

Release mode

grd.exe configFileName -nd

It runs GReAT engine without any
debugging capabilities.

8.2.2. To start debugging
 Load a configuration file using Load command.

 Click Run, or Step Into.

• 52

8.3. Call Stack Window
During a debug session, the Call Stack window displays the stack of rule calls that are
currently active. When a rule is called, it is pushed onto the stack. When the rule returns,
it is popped off the stack.

The Call Stack window displays the currently executing rule at the top of the stack and
older rule calls below that. The window also displays variable types and values for each
rule call.

You can navigate to a rule’s source code from the Call Stack window using right mouse
click.

8.4. Debug Options on the Control Toolbar
8.4.1. Debug Commands that Control Program Execution

Debug
command

Action

Execute Executes code without debugging information. The program can
be stopped using Stop button.

Run Executes code from the current statement until a breakpoint or
the end of the program is reached, or until the execution stopped
or paused by the user or the application exits.

Stop Terminates the execution either in Debug mode or in Release
mode.

Pause Halts the program at its current location.

Step Into Single-steps through rules in the program, and enters each rule
call that is encountered.

Step Over Single-steps through rules in the program. If this command is
used when you reach a rule call, the rule is executed without
stepping through the rule's instructions.

Step Out Executes the program out of a rule call, and stops on the rule
immediately following the call to the rule. Using this command,
you can quickly finish executing the current function after
determining that a bug is not present in the function.

8.5. Running Debug Mode Versus Release Mode
When you invoke GRDebugger both a Debug and a Release mode can be achieved using
command line options or you can start using Execute button from toolbar.

• 53

Mode Features

Debug mode Debugging information in is stored.
Speed is reduced.

Release mode No debugging information
Maximum speed

8.6. Debugger Toolbar And Menu Items
The File menu contains commands such as Open, Close, Save and Exit. GReAT
configuration files can be opened using these commands.

The View menu contains commands that display the various windows, such as the Stack
window, Log window and the Status Bar.

The Help menu contains commands that display the Help window or the About window.

Commands for debugging can be found on the control toolbar and the breakpoint toolbar.
These commands start the debugging process (Go, Step Into, Step Out, Step Over,
Run).

8.7. Debugger Windows
Three specialized windows display debugging information for your program. You can
access these windows using the View menu.

The following table lists the debugger windows and describes the information they
display.

8.7.1. Debugger Windows
Window Displays

Log Information about the loading, saving and execution, including
loading, running or saving errors, exceptions. The executed rule
names will be shown here in the case of Log command.

Source Names and values of variables and expressions.

Call
Stack
and
Variables

Information about variables used in the current and previous
statements and function return values (in the Auto tab), variables
local to the current function (in the Locals tab), and the object
pointed to by this (in the This tab).

• 54

Debugger windows can be docked or floating.

When a window is in floating mode, you can resize or minimize the window to increase
the visibility of other windows.

8.8. Halting a Program
8.8.1. To halt execution
Click Pause on the control toolbar and the control will return to GRDebugger

8.9. Running to a Location
8.9.1. To run until a breakpoint is reached
Set a breakpoint.

On the tool bar, click Run button.

8.10. Stepping Into Rules
8.10.1. To run the program and execute the next rule (Step Into)
While the program is paused in break mode (program is waiting for user input after
completing a debugging command), click Step Into on toolbar.

The debugger executes the next rule, then pauses execution in break mode. If the next
statement is a rule call, the debugger steps into that rule, then pauses execution at the
beginning of the rule.

Repeat step 1 to continue executing the program one rule at a time.

8.10.2. To step into a specific rule
Set a breakpoint just before the rule call.

Use the Run, Step Into, or Step Over command to advance the program execution to
that point.

8.11. Stepping Over or Out of Rules
8.11.1. To step over a rule

 Open a source file, and start debugging.

 Execute the program to a rule call.

 On the Debug menu, click Step Over.

 The debugger executes the next rule, but pauses after the rule returns.

 Repeat step 3 to continue executing the program, one statement at a time.

• 55

8.11.2. To step out of a rule
 Start debugging, and execute the program to some point inside the rule.

 On the Debug menu, click Step Out.

 The debugger continues until it has completed execution of the return from the
rule, then pauses.

Caution In general, to avoid very slow execution, you should not step out of a rule
containing a loop. Instead, you should set a breakpoint at the end of the rule, and then
choose Go from the Debug menu to execute to the end of the rule. Then choose Step
Out.

8.12. Viewing and Enabling Breakpoints
8.12.1. To set a breakpoint

 In the source code window, select the line containing the breakpoint you want to
enable.

 Click the Toggle Breakpoint toolbar button.

 A red dot appears at selected line in the left margin of the source window.

8.12.2. To remove a breakpoint
 For a location breakpoint in a source code window, select the line containing the

breakpoint you want to disable.

 Click the Toggle Breakpoint toolbar button.

 For a location breakpoint, the red dot in the left margin disappears.

8.12.3. To view the list of current breakpoints
 On the toolbar, click Show All Breakpoints button.

8.12.4. To remove all breakpoints
 Click the Remove All Breakpoints toolbar button.

 The red dots in the left margin disappear.

8.13. Viewing the Call Stack for a Rule
8.13.1. To view the call stack for a rule

 Place a breakpoint in the rule.

 On the toolbar, click Run to execute your program to the location of the
breakpoint.

 On the View menu, click Stack if the stack window is not visible.

• 56

 The calls are listed in the calling order, with the current rule (the most deeply
nested) at the top.

8.13.2. To change the call stack display
 Double click on a Rule name expands all the variable types in that rule context.

 Double click on a variable type name will expand all the variable of that type.

 Double click on a variable name will expand all the variable values. If a value is
empty it probably has empty string name.

8.14. Viewing the Value of a Variable
 To view the value of a variable

 Wait for the debugger to stop at a breakpoint.

– or –

 Click Pause on the toolbar.

 Find the variable in the Stack window.

 To view the value of a variable using right click

 When the debugger is stopped at a breakpoint, switch to a source window, and
click the right mouse button on the line declaring the variable.

 Select the variable.

 To view type information for a variable in the Stack window

 In the Stack window, find the variable and see its parent.

• 57

9. GReAT Configuration

9.1. High-level
The operation of the various GR tools (GR Engine, Debugger and the Code Generator) is
controlled by the GReAT configuration data. Visual setting of the GReAT configuration
is available in GME, because the GReAT configuration is part of the UMT meta model.
The GME visual configuration process involves the creation of a configuration model,
and adding various configuration elements into it. Part of the configuration can be also
edited in a configuration dialog box.

Figure 46 Visual configuration for the ‘Signal Flow to Flat Signal Flow’ transformation

Short description of the UMT Configuration elements follows:

SF2FSF_MetaInfo::MetaInfo contains the GR translation file name and the name of
file which contain meta information of the participating input and output models in the
translation.

OpenSF::File, SaveFSF::File refer to the input and output models, respectively.

SF_FileType::FileType, FSF_FileType::FileType refer to the input and output model
types. Define the meta name, root folder and file mode of the corresponding file.

File::FileObject define which objects in the input or the output file to be assigned to
which input ports of the start rule.

SF2FSF_StartRule designates the first rule to execute in the transformation process.

UserCodeLibrary contains the additional user predefined library files, include files and
the corresponding directories.

• 58

NoPrompt do not display the GreatConfig configuration dialog.

Input, output files can also be selected by the Windows Open File Dialog in GReAT
Configuration Dialog. See Fig. 8.2.

Figure 47 he GReAT Configuration Dialog

Changes in the dialog are reflected back into the configuration model, i.e. after
completion the configuration model is updated with the selected input/ output files.

 Here is the step by step guide how to create the configuration for your transformations:

1. Open your existing UMT model you want configure in GME.
2. Create a Configurations folder.

Select the Root Folder in the Browser, select Insert Folder/Configurations.
3. Create a Configuration model.

Select the Configurations folder created in Step 2 and select Insert Model/
Configuration.

4. Set the Meta information.
Drag & drop a MetaInformation atom from the Part Browser into the
Configuration model created in Step 3. Set the following attributes:

• Transformation GR file: output file name of the “Convert transformation
rules to GR format” interpreter.

• 59

• Udm Project File: output file name of the “UML 2 UDM/XML”
interpreter.

Note: These attributes are not needed to be specified manually, they are going to
be updated automatically after running the respective interpreters.

5. Set the Usage information.
Setting the usage information consist of the start rule selection, and the
assignment of input model objects to input ports of the start rule.

a. Select the start rule.
Drag & drop a StartRule proxy into the Configuration model. Drag & drop
any existing rule from your Transformation folder on the StartRule proxy.

b. Assign objects to input ports.
Drag & drop a FileType model into the Configuration model. Each
FileType model represents a template for an input model. A file type
model contains only meta information of the corresponding input model.
The separation of FileType-s from actual File-s is very practical, because
it makes the abstraction of the input object assignment possible: instead of
specifying real objects in a specific input file, you specify object path in a
type of input files. The object path is a semi-colon separated expression,
where each expression element specifies an object type, starting from the
type of the root folder.

• Create a FileObject atom in the FileType model and specify the
object path attribute of it.

• Connect the created FileObject atom to the input port of the start
rule, which input port you want the FileObject assigned to.

Also, set the following FileType attributes:
• Meta name: input (output) model paradigm name.
• Root class name: root name of model paradigm.

This must match with the first object type of the object path
attribute specified in all of the contained FileObject-s.

• File mode: File operation semantics:
o Read: open read-only.
o Write: open write-only (create new or overwrite

existing).
o Read and write: open read-write (open and update

existing).
o Read and write to a copy: open existing file and

save under a different file name.
• DTD pathname: if the model paradigm is an .xml file, the path of

the corresponding .dtd file.
6. Set the Runtime information

Specify the actual input and output models of the transformation. Drag & drop a
File atom for each input and output model into the Configuration model, and set
the following attributes:

• File path name: Read/Write file name of the model depending on the
selected File mode in the connected FileType attributes.

• 60

• Copy path and name: Specify only if ‘Read and write to a copy’ File mode
is selected in the connected FileType attributes. The opened filed is saved
under this file name.

Finally connect the corresponding File-s and FileType-s.
If you want to generate code by the “Generate code from rules” interpreter, the
specification of the Runtime information is not obligatory, although specifying it
enables the CG to generate a main.cpp file, which can open & save the files
specified in the Runtime information by default. See chapter 6 for more details.

7. Interpret your transformation
If you have not executed the “Convert transformation rules to GR format” and the
“UML 2 UDM/XML” interpreters yet, execute them prior to executing the
“Generate Configuration file” interpreter. These interpreters update automatically
your configuration meta information as described in step 4, which changes must
be reflected in the output of “Generate Configuration file” interpreter.

8. Interpret the configuration data by the “Generate Configuration file”
interpreter
The GR tools accept configuration models in the GReATConfig paradigm, which
can be generated by executing the “Generate Configuration file” interpreter. If
you have multiple configurations specified in your Configurations folder, be sure
to select the Configuration model you want to interpret. In case you have only one
configuration model specified, that one will be interpreted regardless of the actual
selection. After interpretation completed, the ‘Config file path name’ attribute of
the interpreted Configuration model is filled automatically with the generated
config file name. Now you can execute the GR Engine on your transformation, or
after specifying the ‘Filename base for Code Gen’ attribute, you can also execute
the Code Generator interpreter. Failing of specifying this ‘Filename base for Code
Gen’ attribute results in the code generation with default file name ‘.\output.cpp’
and ‘.\output.h’.

The ‘Transformation GR file’ and ‘Udm project file’ attributes specified in step 4 can be
either in absolute or relative path format. If relative path is used, the specified attribute is
considered relative to the generated config file path. E.g. if config file path is
‘c:/GReAT/Conf/config.mga’ and the ‘Transformation GR file’ attribute is
‘../Trans/trans-gr.xml’ then the GR tools will search for the transformation file in ‘C:/
GReAT /conf/../Trans’ or equivalently in ‘c:/ GReAT /trans’. Similarly, if the ‘Udm
project file’ attribute is ‘../Meta/meta.udm’ then the project file is given by ‘c:/
GReAT/Meta/meta.udm’.

9.2. Low-level
The output of the “Generate Configuration file” interpreter is yet another model. This
intermediate model format called GReATConfig is the direct configuration input for the
GR tools.

There is no need of manually editing this file, however it might be useful to be familiar
with the GReATConfig meta model, which is depicted below.

• 61

Figure 48 The GReATConfig meta model in UML notation

• 62

10. Specifying Command Line Arguments
The command line version of GRE and the generated code take command line arguments
to open/create/save input and output models. Two examples are provided to illustrate
how to specify these arguments.

10.1. Example 1
Suppose, you want configure the SignalFlow 2 FlatSignalFlow UmlModelTransformer
model by specifying an input SignalFlow model and an output FlatSignalFlow model.
This can be configured by creating two FileType atoms, :

- one for the SignalFlow model (fileID: “SF”) with action read
- and another one for the FlatSignalFlow (fileID: “FSF) model with action

write

 Then, GRE or the CG generated code will take the following arguments:
SF=”SFInputModel.mga” FSF=”FSFOutputModel.mga”

where
- the order of SF and FSF arguments can be arbitrary
- If either file name contains white space characters, then the use of quotes “ is

obligatory, otherwise the file name will be split into two arguments.
- If the file name does not contain white space characters, the use of quotes “ is

optional.
- Any command line argument is considered legal, if the expression to be parsed

has two strings separated by the equal character “=”. The string literal before
“=” is the fileID, the string literal after “=” is the filename.

- CG generates main code which is able to provide default arguments. The
default arguments are meaningful only if the runtime information is specified
in the GReATConfig model. The generated main.cpp behaves differently on
the number of command line arguments:
o If no arguments found, the usage of the program is printed out to the

console.
o If –d argument found, then the default arguments (specified in runtime

information in the GReATConfing model) will be parsed and used in the
program.

o Otherwise each argument is going to be parsed and used in the program.

The user must specify only those input files (identified by file IDs), which are not default.
E.g. if he want use SF=”SFInputModel.mga” always but with different output FSFs, he
can call specify FSF=”myFSFOutputModel.mga” only.

If invalid expression found by the parser, exception is thrown. (“Invalid input file
expression: <expr>” printed to the console)

• 63

10.2. Example 2
Configuring HSM2FSM involves specifying creating one FileUsage atom with action
ReadWriteCopy (rwc). An input StateChart model gets read, and an output StateChart
model is created, copied and saved by the generated code.

Then, GRE or the CG generated code will take the following arguments:

SC=”inputSC.mga”;”outputSC.mga”

- here quotes can be omitted as well, but do not forget to specify the separator
“;”, because if you miss out “;” the entire expression after “=” is considered to
be filename.

- The parser is able to ‘eat’ any white space characters around the separators
“=” and “;”. This seems to be not useful in specifying command line
arguments, because then the argument is split into two separate arguments.

• 64

	GReAT User Manual
	Aditya Agrawal
	Zsolt Kalmar
	Gabor Karsai
	Feng Shi
	Attila Vizhanyo
	Institute for Software-Integrated Systems
	Vanderbilt University
	November 2003
	Table of Contents
	1. Introduction 1
	1.1. Installation Instructions 1
	2. Package Contents 2
	3. Step by Step guide to using GReAT 4
	3.1. Transforming models from one GME paradigm to another 4
	3.2. Transforming GME models to text 6
	4. The Tool Chain Overview 9
	4.1. The GReAT Master Interpreter 10
	4.2. The UML2XML Interpreter 11
	4.3. The GenerateGR Interpreter 11
	4.4. The GenerateConfig Interpreter 11
	4.5. The Invoke GR Engine Interpreter 11
	4.6. The Code Generator Interpreter 11
	4.7. The Library Update Utility 11
	4.8. The Configuration Model Editor 12
	4.9. The Port Connector Tool 13
	4.10. The Block Generator Tool 13
	4.11. The Create Next Rule Tool 14
	5. Semantics of the Transformation Language 16
	5.1. Heterogeneous Graph Transformations 16
	5.2. Rule 18
	5.3. Sequence of Rules 22
	5.4. Hierarchical Rules 23
	5.5. Branching using test case 27
	5.6. Parallel Execution 29
	5.7. Global Container 32
	5.8. Sorting 33
	5.9. Distinguished Merging 36
	5.10. Match-any-association 39
	5.11. Group Matches 41
	5.12. Termination 43
	5.13. Embedded with Customized Code 43
	5.14. Code Library 44
	5.15. User Code libraries 45
	6. GR Engine 46
	6.1. GRE.exe 46
	6.2. InvokeGRE.dll 47
	7. Code Generator 49
	7.1. How to compile the generated files 51
	7.2. How to execute the generated files 51
	8. GR Debugger 52
	8.1. Overview: The Debugging Interface 52
	8.2. Starting the Debugger 52
	8.3. Call Stack Window 53
	8.4. Debug Options on the Control Toolbar 53
	8.5. Running Debug Mode Versus Release Mode 53
	8.6. Debugger Toolbar And Menu Items 54
	8.7. Debugger Windows 54
	8.8. Halting a Program 55
	8.9. Running to a Location 55
	8.10. Stepping Into Rules 55
	8.11. Stepping Over or Out of Rules 55
	8.12. Viewing and Enabling Breakpoints 56
	8.13. Viewing the Call Stack for a Rule 56
	8.14. Viewing the Value of a Variable 57
	9. GReAT Configuration 58
	9.1. High-level 58
	9.2. Low-level 61
	10. Specifying Command Line Arguments 63
	10.1. Example 1 63
	10.2. Example 2 64
	Introduction
	The GReAT tool suite has been designed for the rapid specifi
	Developing model interpreters that convert gme models (confo
	Developing model interpreters that convert gme models (confo
	Developing model interpreters that convert gme models (confo
	Developing transformers that convert xml files belonging to
	Developing transformers that convert xml files belonging to
	Installation Instructions

	Download the latest GReAT install shield package, change log
	Package Contents
	Languages
	1.
	UML Model Transformer
	The Graph Transformation Language
	2.
	MetaGME
	A UDM compatible MetaGME
	3.
	UML
	A UDM compatible UML
	4.
	GReAT Config
	A paradigm to store configuration information (not directly
	UML Model Transformer (UMT) Interpreters
	GReAT Master Interpreter
	It receives information of all the file locations and calls
	Generate GR
	Converts rewriting rules to internal format
	Generate Config
	Converts configuration information to GReAT Config
	UML2XML
	Converts the Meta information to UDM
	Invoke Engine
	Executes engine that performs transformations
	Code Generator
	Converts transformation rules to C++ code.
	Library Update
	Updates references from one class diagram package to another
	Configuration Model Editor
	It invokes a GUI to edit the configuration model parameters
	Port Connector
	It is used to connect output ports of an expression to the i
	Block Generator
	Select a sequence of connected rules, and this tool generate
	Create Next Rule
	Select one rule, invoke this tool, and a new rule is created
	MetaGME interpreters
	MetaGME2UML
	Converts GME metamodels to a UDM compatible UML Class diagra
	MetaGME2UMT
	Converts GME metamodels to a UML package and attaches it to
	UML interpreters
	UML2XML
	Converts UML class diagrams to UDM meta XML file
	Command Line Tools
	1.
	CG.exe
	Command line version of the code generator
	2.
	GRE.exe
	Command line version of the transformation engine
	3.
	GRD.exe
	Debugging GUI for the transformations
	Step by Step guide to using GReAT
	The GReAT package can be used in various scenarios. This sec
	Transforming models from one GME paradigm to another

	This is a scenario where there exists two GME metamodels, so
	Open the source metamodel and invoke the MetaGME2UMT interpr
	Open the target GME Metamodel and invoke the MetaGME2UMT int
	Open the transformation file <TF> in GME. Using the Browser,
	You can now start to create your transformation rules. Use t
	Note: These top level ports need to be named uniquely for pr
	Now you typically continue with creating subsequent blocks,
	Addition of a rule into a block consists of three steps:
	Specify the pattern by creating a reference to those Metamod
	Specify a set of objects and links you want to create or del
	Specify the connection of the rule with its consisting block
	The minimal proper transformation consists of the root block
	After creating the transformations you need to create a conf
	the start rule which will be invoked first,
	the meta info; this configuration element is specified autom
	the input and output file types, which define the meta name,
	Finally, the created configuration must be interpreted by th
	If you update your Metamodel, you need to reflect those chan
	Run the MetaGME2UMT interpreter again. This will create anot
	Run Library Update () and specify the old library as <Paradi
	Delete Old<Paradigm Name><Unique ID> from <TF>
	Different parts of the transformation model are converted in
	Transformation information in converted to GR format
	UML Packages and cross links are converted to UDM meta forma
	Configuration is converted to GReATConfig format.
	The GReAT Master interpreter is used to convert the models t
	After all the files have been generated the transformation c
	Transforming GME models to text

	This is a scenario where the user has a GME metamodel and wa
	The approach to solve this problem is to create a data struc
	Open the metamodel and invoke the MetaGME2UMT interpreter. T
	Open a new project in the UML paradigm of GME and specify th
	Open the transformation file <TF> in GME. You will see your
	Attach the text data structure file as a library in the <TF>
	You can now start to create your transformation rules. Use t
	Note: These top level ports need to be named uniquely for pr
	Now you typically continue with creating subsequent blocks,
	Addition of a rule into a block consists of three steps:
	Specify the pattern by creating a reference to those Metamod
	Specify a set of objects and links you want to create or del
	Specify the connection of the rule with its consisting block
	The minimal proper transformation consists of the root block
	After creating the transformations you need to create a conf
	the start rule which will be invoked first,
	the meta info; this configuration element is specified autom
	the input and output file types, which define the meta name,
	Finally, the created configuration must be interpreted by th
	If you update your Metamodel, you need to reflect those chan
	Run the MetaGME2UMT interpreter again. This will create anot
	Run Library Update () and specify the old library as <Paradi
	Delete Old<Paradigm Name><Unique ID> from <TF>
	Different parts of the transformation model are converted in
	Transformation information in converted to GR format
	UML Packages and cross links are converted to UDM meta forma
	Configuration is converted to GReATConfig format.
	The GReAT Master interpreter is used to convert the models t
	After all the files have been generated the transformation c
	To generate data in a particular text format you extend the
	The Tool Chain Overview
	This section describes the different interpreter, their use
	Figure 1 GReAT Tool Chain Overview
	Interactions and steps between the tools are described as fo
	Build Transformation model:
	Attach all UML class diagrams using either MetaGME2UMT or by
	Build the transformation rules;
	Build configuration model, please refer to Section 9. GReAT
	Run Transformation model:
	Phase I:
	Invoke GReAT Master interpreter interpreter (GReAT Master In
	Phase II:
	To successfully run Phase II and Phase III, Phase I should h
	Run GR Engine to perform the transformation rules on input m
	Run GR Debugger (GRD.exe) to locate bugs in a transformation
	Phase III:
	Run Code Generator to generate C++ code from the transformat
	The GReAT Master Interpreter

	This is the main interpreter and it can call all other inter
	Figure 2 Sample of the GReAT Master Interpreter dialog box.
	The first phase of the interpretation is the generation of t
	The UML2XML Interpreter

	This interpreter works on both the UML paradigm in GME and t
	If you have more that one uml package in you project it will
	The GenerateGR Interpreter

	This interpreter converts the transformation rules to the GR
	The GenerateConfig Interpreter

	The Generate configuration Interpreter converts the configur
	The Invoke GR Engine Interpreter

	This interpreter invokes the GR Engine that performs the tra
	The Code Generator Interpreter

	This interpreter generates C++ code that implements the tran
	The Library Update Utility

	The Library update utility is used to transfer references fr
	The Configuration Model Editor

	This interpreter invokes the GUI for user to edit the config
	Figure 3 Sample of the Generate Configuration Model interpr
	The meta names of paradigms involved in the transformation
	This editor can be invoked at any stage of the transformatio
	Details on the configuration model are provided in Section 9
	The Port Connector Tool

	The port connector tool is used to connect output ports of a
	Simply select the two expressions whose ports you want to co
	Figure 4 Before invoking the port-connector tool
	Figure 5 After invoking the port-connector tool
	The Block Generator Tool

	The block generator is used to move a group of selected expr
	Simply select a group of connected expression rules which ne
	Figure 6 Before invoking the Block generator tool
	Figure 7 After invoking the Block generator tool
	Figure 8 Inside the Block rule
	The Create Next Rule Tool

	The Create Next Rule tool is used to automatically create th
	Figure 9 Before invoking CNR tool (select InputPort_Queue)
	Figure 10 Inside InputPort_Queue
	Figure 11 After Invoking Create Next Rule tool
	Figure 12 Inside Newly Created Rule
	Semantics of the Transformation Language
	The Transformation language called Universal Model Transform
	The language has a set of basic concepts. In Figure 13 we se
	Figure 13 Expression Hierarchy of UMT
	Before explaining the rules the concept of heterogeneous tra
	Heterogeneous Graph Transformations

	UML classdiagrams are used in GReAT to capture the meta info
	Figure 14 Metamodel of Hierarchical Concurrent State machine
	Figure 15 shows a UML class diagram that represents the doma
	Figure 15 Metamodel of a simple finite state machine
	There is problem: maintaining references between the differe
	A simple algorithm could first create a target vertex for ea
	This problem is tackled in GReAT by using an additional doma
	Figure 16 A metamodel that introduces cross-links
	Cross-links can be defined not only between different domain
	During the transformation the users can create modify and de
	Rule

	A rule in the transformation language is defined as a 9-tupl
	R = (pattern, action, input interface, output interface, gua
	Where,
	Pattern
	(
	is a graph with pattern vertices and edges.
	Action
	(
	is a mapping of pattern vertices and edges to {Bind, CreateN
	Input interface
	(
	is a set of distinct input ports that can receive graph obje
	Output interface
	(
	is a set of distinct output ports that will transfer graph o
	Guard
	(
	is an OCL expression that’s evaluates on a match of the LHS
	Attribute mapping
	(
	are arithmetic and string expressions that are evaluated for
	Match condition
	(
	can be either “all matches” or “any match”. If it is “all ma
	Figure 17 shows an example rule. The rule contains a pattern
	Figure 17 An example rule with patterns, guards and attribut
	GReAT relies on UML metamodels for defining patterns. Furthe
	Figure 18 Start of a rule fire sequence with 2 input packets
	Figure 18 till Figure 22 shows the execution of a rule. In F
	Figure 19 Rule has a set of matches for first input packet
	Figure 20 a set of output packets generated for each match
	Figure 21 matches for the second input packet
	Figure 22 final state after the execution of the rule
	Sequence of Rules

	After having a clear idea of the execution of a single rule
	(a)
	(b)
	(c)
	Figure 23 Firing of a sequence of 2 rules
	Hierarchical Rules

	There are two types of hierarchical rules.
	Block
	For Block
	Both the hierarchical rules have the same semantics with res
	A block is a container that encapsulates a number of rules.
	The output interface of the block can be attached to the out
	(a)
	(b)
	(c)
	(d)
	(e)
	Figure 24 Rule execution of a Block
	Figure 25 illustrates the case when the output interface of
	(a)
	(b)
	(c)
	(d)
	Figure 25 Sequence of execution within a block
	The “for block” has different semantics within. If we have n
	(a)
	(b)
	(c)
	(d)
	(e)
	(f)
	(g)
	(h)
	Figure 26 Rule execution sequence of a "for block"
	Similar to the block the output interface of the “for block”
	Branching using test case

	There are many scenarios where the transformation to be appl
	The external semantics of a test case is similar to any othe
	(a) (b)
	Figure 27 Execution of a test case construct
	The test can have 1..* cases. Each case is a rule with no ou
	(a) (b)
	Figure 28 Execution of a case
	When a test has many cases then each input packet is checked
	(a) (b)
	(c) (d)
	(e)
	Figure 29 Execution of a test condition
	In Figure 29 the execution of a test is shown. An input pack
	Parallel Execution

	When a rule is connected to more than one rule or when there
	(a)
	(b)
	(c)
	(d)
	(e)
	(f)
	(g)
	Figure 30 A parallel execution sequence
	Figure 30 shows the execution sequence for parallel executio
	Global Container

	The control flow language of GReAT specifies an execution or
	To further simplify development, we have introduced the conc
	The general idea of the global container is that the objects
	GReAT containers are temporary, non-persistent objects that
	One can create an arbitrary type system for the global conta
	Global containers are most useful in large transformations,
	Figure 31 Using global containers
	The left rule in Figure 31, (1) associates components that h
	Sorting

	The pattern matching in GReAT is deterministic in the sense
	Consider an example of a StateFlow to C code generator in GR
	void Parent_exec() {
	ChildA();
	ChildB();
	ChildC();
	}
	Note that the first “ChildA” is executed, then “ChildB” and
	Figure 32 Create State execution functions
	Figure 32 shows one solution for concurrent state code gene
	void Parent_exec() {
	ChildB();
	ChildA();
	ChildC();
	}
	Clearly, we need to specify an ordering of parallel states,
	The GReAT programmer can specify sorting by setting the attr
	Figure 33 Create ordered State execution functions
	During the sorting step, matches produced by the pattern mat
	template <class T>
	bool StateOrder(const T& lhs, const T& rhs) {
	return lhs.Order() < rhs.Order();
	}
	Figure 34 Predicate for comparing States by using the Order
	Distinguished Merging

	Figure 35 The Connecting Ports Problem
	Name: Distinguished merging
	Inputs: Total cross product of input and output ports, sorti
	Output: Distinguished subset of input and output ports, wher
	Break apart the elements of the total cross product and crea
	Sort the elements of the input port set and output port set
	Remove duplicates of consecutive elements with the same valu
	Compute the distinguished subset, by arranging the elements
	Input: {(O1,I1), (O1,I2), (O1,I3), (O2,I1), (O2,I2), (O2,I3)
	After step 1: {O1,O1,O1,O2,O2,O2,O3,O3,O3},{I1,I2,I3,I1,I2,I
	After step 2: {O1,O1,O1,O2,O2,O2,O3,O3,O3},{I1,I1,I1,I2,I2,I
	After step 3: {O1,O2,O3},{I1,I2,I3}
	After step 4 & output: {(O1,I1), (O2,I2), (O3,I3) }
	Figure 36 Connecting Ports
	Figure 37 Rule that selects connecting ports
	Figure 38 Rule that selects adjacent component pairs
	It is interesting that distinguished merging can also be use
	Input: {(C1,C2),(C1,C3),(C1,C4),(C2,C1),(C2,C3),(C2,C4),(C3,
	After Guard: {(C1,C2),(C1,C3),(C1,C4),(C2,C3),(C2,C4),(C3,C4
	After step 1: {C1,C1,C1,C2,C2,C3},{C2,C3,C4,C3,C4,C4}
	After step 2: {C1,C1,C1,C2,C2,C3},{C2,C3,C3,C4,C4,C4}
	After step 3: {C1,C2,C3},{C2,C3,C4}
	After step 4 & output: {(C1,C2), (C2,C3), (C3,C4)}
	Figure 39 Selecting Source-Destination Rule Pairs
	Match-any-association

	The match-any-association feature is useful when you do not
	There are two respective language constructs you can use to
	Figure 40 Select MatchAnyAssociation for list of connections
	If you select MatchAnyAssociation from the list, a correspon
	Figure 41 MatchAnyAssociation notation
	The semantics of MatchAnyAssociation is to find out if two o
	The other language feature is called ConnectorAny, and it is
	Figure 42 ConnectorAny notation
	The semantics of ConnectorAny is to find all associations co
	Figure 43 UML class diagram representing Bidirectional assoc
	Group Matches

	After all the matches have been found for the pattern descri
	The difference between these two execution styles is the rep
	Group is implemented using the Set concept in GME. A group c
	Criteria for grouping matches: This is an OCL expression tha
	GroupAction: After the group is computed, there are four dif
	Bound: No action will be executed on the objects and/or link
	Move: All the objects and/or links in this group will be mo
	Copy: All the objects and/or links in this group will be cop
	Delete: All the objects and/or links will be deleted. With t
	The following example will illustrate how to use Groups. Fig
	Step 1: Pattern matching: Find all matches for the pattern d
	return (BehaviorUnit1.id() == BehaviorUnit2.id());
	This will return all matches in which the two connected FSM
	Step 2: Grouping matches: Apply the grouping criteria shown
	return (the_BehaviorUnit1.id() == other_BehaviorUnit.id());
	With this grouping criteria, it will form a connection chain
	Step 3: Create new objects: After the groups are formed in S
	Step 4: Move group: All the FSM objects connected with each
	Figure 44 A rule with Group
	Figure 45 Members of Group
	Termination

	A rule sequence is terminated either on a rule having no out
	Thus if the firing of a rule produces zero output packets th
	Embedded with Customized Code

	The final item to discuss is the embedded transformation rul
	if we want set the name for the new created object of Queue,
	Then after the new object of Queue is created, the above cod
	Also users are allowed to link the transformation rule with
	Code Library
	User Code libraries

	You can use the User Code Library feature to define addition
	You can set the following attributes of a UserCodeLibrary:
	Include files?: the name of the C/C++ include header file, o
	Library files?: the name of the C/C++ statically linked libr
	Include directories?: path, where the compiler should look f
	Library directories?: path, where the linker should look for
	The following formatting rules apply when specifying UserCod
	All files and directories are separated by comma (,) or alte
	Directory names can contain space characters, but file and d
	File names cannot contain directories; you must specify the
	Include files must be enclosed in either brackets (<>) or qu
	When specifying library files, do not specify the .lib exten
	You can specify either absolute path or relative path information for both directories settings. If you specify a relative path, it will be converted to an absolute path by computi
	GR Engine
	The Graph Rewrite Engine (GR Engine) is a fully meta-model-d
	GReAT provides two different usages of GREngine. It can eith
	GRE.exe
	NAME

	GRE.exe – directly use configuration file as input to genera
	SYNOPSIS

	GRE <configurationFile> [<fileSpec>] ……
	<configuraitonFile>
	the name of the configuration file (“.mga” or “.xml”) genera
	< fileSpec >
	the string to specify the file with file Id and file name. I
	FileID=FileName
	If the file mode is read, write and copy, the format must be
	FileID=FileName1;FileName2
	FileName1 will be used to read in model, FileName2 will be u
	If the FileName contains white space characters, then the us
	For more info read Chapter 10
	-d
	print out run time transformation rule name during execution
	-dv
	print out run time transformation rule name, input packets,
	SAMPLE

	GRE.exe SF2FSF.mga SF=“SFInput.mga” FSF=“FSFOutput.mga”
	SF2FSF.mga : configuration file
	SF, FSF : file ID
	SFInput.mga, FSFOutput.mga : file name
	DESCRIPTION

	GRE takes in the <configurationFile> to generate the output
	FILES

	GReATConfig.dtd
	If the <configurationFile> is XML format (“.xml”), it must
	InvokeGRE.dll
	NAME

	InvokeGRE.dll – GME model interpreter used to generate the o
	USAGE

	Register and run the interpreter within GME/ UMLModelTransfo
	If there is “NoPrompt” atom in the configuration model, then
	If there is no “NoPrompt” atom in the configuration model, u
	Code Generator
	Code Generator is a GR to C++ translator utility, which can
	What is in the package
	bin/CG.exe - Code Generator command line executable
	UMLModelTransformer/CodeGenerator.dll - Code Generator GME i
	etc/GR.xsd - must be in path to execute CG.exe
	etc/InputFileRegistry.h - must be in path to compile output
	etc/GReATSort.h
	Command line tool usage
	You can execute CG.exe from the command prompt.
	CG.exe <GenFileName> <ConfigFileName> [-m|-t]
	GenFileName - the generated rewriting code file name base.
	ConfigFileName - GReAT Configuration information file.
	[-m] Generate the main.cpp file only.
	[-t] Generate the translator files only.
	[-p] Generate Visual Studio projects files also.
	[-e] Generate transformation executable file (Compile tra
	Examples:
	CG.exe SF2FSF SF2FSFConfig.mga
	CG.exe generated\HSM2FSM HSM2FSMConfig.mga -t
	The translator files consist of the code which perform the t
	GME interpreter usage
	Just click on the icon on the GME interpreter toolbar. Be s
	Code Generator specific configuration data:
	Filename base for Code Gen: the generated rewriting code file name base. Example if you give Gen\MyTransformation, then CG generates the following files:
	.\Gen\ MyTransformation.cpp
	.\Gen\ MyTransformation.h
	.\Gen\ MyTransformation_main.cpp,
	.\Gen\MyTransformation.vcproj
	where .\Gen is relative to the directory of the configuration file.
	Meta code generation mode for Code Gen: This is an enumerati
	[GR filename]_Static<_D>.lib contains the Attribute Mapping
	[GR filename]_Meta<_D>.lib contains the generated paradigm-s
	where [GR filename] is the GR file which is output of the Ge
	No Library (Source code) – Code generator does not create an
	Static Link Library Debug Configuration – CG will create [GR
	Static Link Library Release Configuration - CG will create [
	The libraries are regenerated each time after you invoked th
	TranslatorLog.txt – This is log file created by Code Generat
	How to compile the generated files
	How to execute the generated files

	If the compile was successful, the resulted .exe can be exec
	GR Debugger
	GRDebugger provides an integrated debugger to help locate bu
	GRDebugger has all the basic features that any programming l
	Overview: The Debugging Interface

	Debugging is the process of correcting or modifying the code
	GRDebugger provides a tool to help of tracking down errors i
	The debugger interface provides menus, toolbars, dialog boxe
	Starting the Debugger
	To start the application

	From command line,
	 Mode
	Features
	Debug mode
	grd.exe configFileName [-d] The application brings up the de
	Release mode
	
	grd.exe configFileName -nd
	It runs GReAT engine without any debugging capabilities.
	
	To start debugging

	 Load a configuration file using Load command.
	 Click Run, or Step Into.
	Call Stack Window

	During a debug session, the Call Stack window displays the s
	The Call Stack window displays the currently executing rule
	You can navigate to a rule’s source code from the Call Stack
	Debug Options on the Control Toolbar
	Debug Commands that Control Program Execution

	Debug�command
	Action
	Execute
	Executes code without debugging information. The program can
	Run
	Executes code from the current statement until a breakpoint
	Stop
	Terminates the execution either in Debug mode or in Release
	Pause
	Halts the program at its current location.
	Step Into
	Single-steps through rules in the program, and enters each r
	Step Over
	Single-steps through rules in the program. If this command i
	Step Out
	Executes the program out of a rule call, and stops on the ru
	�
	Running Debug Mode Versus Release Mode

	When you invoke GRDebugger both a Debug and a Release mode c
	Mode
	Features
	Debug mode
	Debugging information in is stored.
	Speed is reduced.
	Release mode
	No debugging information
	Maximum speed
	Debugger Toolbar And Menu Items

	The File menu contains commands such as Open, Close, Save an
	The View menu contains commands that display the various win
	The Help menu contains commands that display the Help window
	Commands for debugging can be found on the control toolbar a
	Debugger Windows

	Three specialized windows display debugging information for
	The following table lists the debugger windows and describes
	Debugger Windows

	Window
	Displays
	Log
	Information about the loading, saving and execution, includi
	Source
	Names and values of variables and expressions.
	Call Stack and Variables
	Information about variables used in the current and previous
	Debugger windows can be docked or floating.
	When a window is in floating mode, you can resize or minimiz
	Halting a Program
	To halt execution

	Click Pause on the control toolbar and the control will retu
	Running to a Location
	To run until a breakpoint is reached

	Set a breakpoint.
	On the tool bar, click Run button.
	Stepping Into Rules
	To run the program and execute the next rule (Step Into)

	While the program is paused in break mode (program is waitin
	The debugger executes the next rule, then pauses execution i
	Repeat step 1 to continue executing the program one rule at
	To step into a specific rule

	Set a breakpoint just before the rule call.
	Use the Run, Step Into, or Step Over command to advance the
	Stepping Over or Out of Rules
	To step over a rule

	Open a source file, and start debugging.
	Execute the program to a rule call.
	On the Debug menu, click Step Over.
	The debugger executes the next rule, but pauses after the ru
	Repeat step 3 to continue executing the program, one stateme
	To step out of a rule

	Start debugging, and execute the program to some point insid
	On the Debug menu, click Step Out.
	The debugger continues until it has completed execution of t
	Caution In general, to avoid very slow execution, you shou
	Viewing and Enabling Breakpoints
	To set a breakpoint

	In the source code window, select the line containing the br
	Click the Toggle Breakpoint toolbar button.
	A red dot appears at selected line in the left margin of the
	To remove a breakpoint

	For a location breakpoint in a source code window, select th
	Click the Toggle Breakpoint toolbar button.
	For a location breakpoint, the red dot in the left margin di
	To view the list of current breakpoints

	On the toolbar, click Show All Breakpoints button.
	To remove all breakpoints

	Click the Remove All Breakpoints toolbar button.
	The red dots in the left margin disappear.
	Viewing the Call Stack for a Rule
	To view the call stack for a rule

	Place a breakpoint in the rule.
	On the toolbar, click Run to execute your program to the loc
	On the View menu, click Stack if the stack window is not vis
	The calls are listed in the calling order, with the current
	To change the call stack display

	Double click on a Rule name expands all the variable types i
	Double click on a variable type name will expand all the va
	Double click on a variable name will expand all the variable
	Viewing the Value of a Variable

	To view the value of a variable
	Wait for the debugger to stop at a breakpoint.
	– or –
	Click Pause on the toolbar.
	Find the variable in the Stack window.
	To view the value of a variable using right click
	When the debugger is stopped at a breakpoint, switch to a so
	Select the variable.
	To view type information for a variable in the Stack window
	In the Stack window, find the variable and see its parent.
	GReAT Configuration
	High-level

	The operation of the various GR tools (GR Engine, Debugger a
	Figure 46 Visual configuration for the ‘Signal Flow to Flat
	Short description of the UMT Configuration elements follows:
	SF2FSF_MetaInfo::MetaInfo contains the GR translation file n
	OpenSF::File, SaveFSF::File refer to the input and output mo
	SF_FileType::FileType, FSF_FileType::FileType refer to the i
	File::FileObject define which objects in the input or the ou
	SF2FSF_StartRule designates the first rule to execute in the
	UserCodeLibrary contains the additional user predefined libr
	NoPrompt do not display the GreatConfig configuration dialog
	Input, output files can also be selected by the Windows Open
	Figure 47 he GReAT Configuration Dialog
	Changes in the dialog are reflected back into the configurat
	Here is the step by step guide how to create the configurati
	Open your existing UMT model you want configure in GME.
	Create a Configurations folder.
	Select the Root Folder in the Browser, select Insert Folder/
	Create a Configuration model.
	Select the Configurations folder created in Step 2 and selec
	Set the Meta information.
	Drag & drop a MetaInformation atom from the Part Browser int
	Transformation GR file: output file name of the “Convert tra
	Udm Project File: output file name of the “UML 2 UDM/XML” in
	Note: These attributes are not needed to be specified manual
	Set the Usage information.
	Setting the usage information consist of the start rule sele
	Select the start rule.
	Drag & drop a StartRule proxy into the Configuration model.
	Assign objects to input ports.
	Drag & drop a FileType model into the Configuration model. E
	The separation of FileType-s from actual File-s is very prac
	Create a FileObject atom in the FileType model and specify t
	Connect the created FileObject atom to the input port of the
	Also, set the following FileType attributes:
	Meta name: input (output) model paradigm name.
	Root class name: root name of model paradigm.
	This must match with the first object type of the object pat
	File mode: File operation semantics:
	Read: open read-only.
	Write: open write-only (create new or overwrite existing).
	Read and write: open read-write (open and update existing).
	Read and write to a copy: open existing file and save under
	DTD pathname: if the model paradigm is an .xml file, the pat
	Set the Runtime information
	Specify the actual input and output models of the transforma
	File path name: Read/Write file name of the model depending
	Copy path and name: Specify only if ‘Read and write to a cop
	Finally connect the corresponding File-s and FileType-s.
	If you want to generate code by the “Generate code from rule
	Interpret your transformation
	If you have not executed the “Convert transformation rules t
	Interpret the configuration data by the “Generate Configurat
	The GR tools accept configuration models �
	The ‘Transformation GR file’ and ‘Udm project file’ attribut
	Low-level

	The output of the “Generate Configuration file” interpreter
	There is no need of manually editing this file, however it m
	Figure 48 The GReATConfig meta model in UML notation
	Specifying Command Line Arguments
	The command line version of GRE and the generated code take
	Example 1

	Suppose, you want configure the SignalFlow 2 FlatSignalFlow
	one for the SignalFlow model (fileID: “SF”) with action read
	and another one for the FlatSignalFlow (fileID: “FSF) model
	Then, GRE or the CG generated code will take the following a
	SF=”SFInputModel.mga” FSF=”FSFOutputModel.mga”
	where
	the order of SF and FSF arguments can be arbitrary
	If either file name contains white space characters, then th
	If the file name does not contain white space characters, th
	Any command line argument is considered legal, if the expres
	CG generates main code which is able to provide default argu
	If no arguments found, the usage of the program is printed o
	If –d argument found, then the default arguments (specified
	Otherwise each argument is going to be parsed and used in th
	The user must specify only those input files (identified by
	If invalid expression found by the parser, exception is thro
	Example 2

	Configuring HSM2FSM involves specifying creating one FileUsa
	Then, GRE or the CG generated code will take the following a
	SC=”inputSC.mga”;”outputSC.mga”
	here quotes can be omitted as well, but do not forget to spe
	The parser is able to ‘eat’ any white space characters aroun

