
1. Signal Flow 2 Flat Signal Flow Example
This example converts models of the SignalFlow paradigm (a hierarchical data flow paradigm) to
the equivalent models in the FlatSF paradigm (a flat data flow representation with buffers on the
edges)

1.1. Directory Organization
 SF2FSF

o SignalFlow2FlatSF.mga - SignalFlow 2 FlatSF transformation
o SignalFlow2FlatSF.xme - Transformation exported XML
o SignalFlow2FlatSF_test_globalObject.mga - Global namespace example
o SignalFlow2FlatSF_test_globalObject.xme - Exported XML of above
o SignalFlow2FlatSF_test_sortingFunc.mga - Sorting function example
o SignalFlow2FlatSF_test_sortingFunc.xme - Exported XML of above
o SignalFlow_test_distinguished.mga - Distinguished cross product example
o SignalFlow_test_distinguished.xme - Exported XML of above
o Meta

 Icons - Icons for the SignalFlow and FlatSF paradigms
 SignalFlow.mga - SignalFlow metamodel
 SignalFlow.xme - SignalFlow.mga exported to XML
 GS_SignalFlow.xmp - SignalFlow paradigm file
 FlatSF.mga - FlatSF metamodel
 FlatSF.xme - FlatSF.mga exported to XML
 GS_FlatSF.xmp - FlatSF paradigm file

o Models
 SignalFlow_1.mga - Model of SignalFlow paradigm
 SignalFlow_2.mga - Model of SignalFlow paradigm
 SignalFlow_3.mga - Model of SignalFlow paradigm
 SignalFlow_4.mga - Model of SignalFlow paradigm
 SignalFlow_5.mga - Model of SignalFlow paradigm
 SignalFlow_6.mga - Model of SignalFlow paradigm
 SignalFlow_7.mga - Model of SignalFlow paradigm
 SignalFlow_to_connect.,mga - Model of SignalFlow paradigm
 SignalFlow_1.xme - SignalFlow_1.mga exported XML
 SignalFlow_2.xme - SignalFlow_2.mga exported XML
 SignalFlow_3.xme - SignalFlow_2.mga exported XML
 SignalFlow_4.xme - SignalFlow_2.mga exported XML
 SignalFlow_5.xme - SignalFlow_2.mga exported XML
 SignalFlow_6.xme - SignalFlow_2.mga exported XML
 SignalFlow_7.xme - SignalFlow_2.mga exported XML
 SignalFlow_to_connect.xme - SignalFlow_2.mga exported XML

o Gen - Will contain the CG tool generated files
o Udm - Will contain the Udm meta files

1.2. How to run SignalFlow 2 FlatSF example?
Open SignalFlow 2 FlatSF transformation model

- Directly open $/ SignalFlow2FlatSF.mga, if it fails, open GME, choose File/Import
XML, and choose $/ SignalFlow2FlatSF.xme

SignalFlow2FlatSF.mga contains the transformation rules, UDM compatible meta information
paradigms and configuration information. Following is the folder structure which is shown in
browser:

 SignalFlow2FlatSF

o CrossLinks - UML class diagram for cross reference
associations

o FlatSF - FlatSF Metamodel in UML class diagram
format

o SignalFlow - SignalFlow Metamodel in UML class diagram
format

o zt_SF2FSF - Folder containing the transformations
o zz_Config - Folder containing configuration information

Run the SignalFlow 2 FlatSF transformation model

- Invoke the GReAT Master Interpreter with icon (This is a required step for the
first time running), Use the default file paths and names provided.

- The transformations can be invoked in various ways
1. GR Engine – Performs the transformations in an interpretive manner
2. GR Debugger – Provides a user interface and debugging features such as break

points, single step, step into etc.
3. Code generator – Converts the transformation into code that can be compiled

and executed.
- To run GR Engine, it could be done either :

 In the GReAT Master Interpreter dialog, check the box “Run GR Engine”; -or-
 Directly invoke the GR Engine interpreter with icon .
 The default input file is $/Models/SignalFlow_1.mga
 The output files will be $/Models/outSF1.mga

- To run the GR Debugger
 Open a command prompt and go to the sample directory $/. Invoke GRD by calling

GRD.exe , then load the config file $/config.mga -or-
 Directly invoke the GR Debugger interpreter with icon .

- To run Code Generator, it could be done either :
 In the same dialog of GReAT Master Interpreter, check the box of “Run Code

Generator”; -or-
 Directly invoke the Code Generator interpreter with icon ; -or-
 Open a command prompt and go to the sample directory $/. Invoke CG by calling

CG.exe , with config file $/config.mga
 After the files have been generated open the generated Visual Studio project using

VS71 and compile the project
 You can run the generated code with default arguments by setting the working

directory to be ..\ and Program argument to be –d (default)

2. The Global Object, Sorting and Distinguished Merging
Examples
 You can follow the same steps listed above to run these examples. The UMT files for these
examples are as below:

1. SignalFlow2FlatSF_test_globalObject.xme – This is the example demonstrates the usage of
Global Objects in GReAT. Observe that first a RootContainer is created in rule RootRule,
which is associated with global root object TempRoot. Then, in a non-adjacent subsequent
rule, called CreateQueue, RootRule is found starting from TempRoot, and neither object is
supplied by input ports.

2. SignalFlow2FlatSF_test_sortingFunc.xme – This example demonstrates sorting in GReAT.
In rule PortBase, PortBase objects are passed along to subsequent rules in a specific order
determined by the compare function nameCmpFunc (attribute of output port LOut). The
compare function nameCmpFunc is defined in zz_Config\CodeLibrary. Rule CreateQueue
will create Queue objects in this order (check the output file Models\OutFSF.xml)

3. SignalFlow_test_distinguished.xme – This example demonstrates distinguished merging in
GReAT. Distinguished merging is used in two rules in this example: rule
SelectComponents, and rule SelectPorts (see the distinguished cross product attribute of
these rules.) SelectComponents selects component pairs that are laid out horizontally right
next to each other. The pattern matching first finds all possible ordered pairs from the set
of input components. To ensure that component ”From” lies to the left of component ”To”,
we utilize the compare function ”XPosCmp” in a guard condition ”From is left to To”,
which discards all pairs where ”From” is right to ”To”. Finally, the distinguished merging
gets rid of all non-adjacent pairs. These source-destination component pairs are then passed
along one-by-one to the rule SelectPorts. SelectPorts selects “OutputPort”-s and
”InputPort”-s in ”BaseComponent”-s. Here, the same predicate “YPosCmp” used as a
compare function for both output ports. The selected component ports are connected in a
subsequent rule, called ConnectPorts.

 Please refer to the GReAT user manual for more information on these features.

	Signal Flow 2 Flat Signal Flow Example
	This example converts models of the SignalFlow paradigm (a h
	Directory Organization

	SF2FSF
	SignalFlow2FlatSF.mga - SignalFlow 2 FlatSF transformatio
	SignalFlow2FlatSF.xme - Transformation exported XML
	SignalFlow2FlatSF_test_globalObject.mga - Global namespace
	SignalFlow2FlatSF_test_globalObject.xme - Exported XML of a
	SignalFlow2FlatSF_test_sortingFunc.mga - Sorting function ex
	SignalFlow2FlatSF_test_sortingFunc.xme - Exported XML of abo
	SignalFlow_test_distinguished.mga - Distinguished cross pro
	SignalFlow_test_distinguished.xme - Exported XML of above
	Meta
	Icons - Icons for the SignalFlow and FlatSF paradigms
	SignalFlow.mga - SignalFlow metamodel
	SignalFlow.xme - SignalFlow.mga exported to XML
	GS_SignalFlow.xmp - SignalFlow paradigm file
	FlatSF.mga - FlatSF metamodel
	FlatSF.xme - FlatSF.mga exported to XML
	GS_FlatSF.xmp - FlatSF paradigm file
	Models
	SignalFlow_1.mga - Model of SignalFlow paradigm
	SignalFlow_2.mga - Model of SignalFlow paradigm
	SignalFlow_3.mga - Model of SignalFlow paradigm
	SignalFlow_4.mga - Model of SignalFlow paradigm
	SignalFlow_5.mga - Model of SignalFlow paradigm
	SignalFlow_6.mga - Model of SignalFlow paradigm
	SignalFlow_7.mga - Model of SignalFlow paradigm
	SignalFlow_to_connect.,mga - Model of SignalFlow paradigm
	SignalFlow_1.xme - SignalFlow_1.mga exported XML
	SignalFlow_2.xme - SignalFlow_2.mga exported XML
	SignalFlow_3.xme - SignalFlow_2.mga exported XML
	SignalFlow_4.xme - SignalFlow_2.mga exported XML
	SignalFlow_5.xme - SignalFlow_2.mga exported XML
	SignalFlow_6.xme - SignalFlow_2.mga exported XML
	SignalFlow_7.xme - SignalFlow_2.mga exported XML
	SignalFlow_to_connect.xme - SignalFlow_2.mga exported XML
	Gen - Will contain the CG tool generated files
	Udm - Will contain the Udm meta files
	How to run SignalFlow 2 FlatSF example?

	Open SignalFlow 2 FlatSF transformation model
	Directly open $/ SignalFlow2FlatSF.mga, if it fails, open GM
	SignalFlow2FlatSF.mga contains the transformation rules, UDM
	SignalFlow2FlatSF
	CrossLinks
	-
	UML class diagram for cross reference associations
	FlatSF
	-
	FlatSF Metamodel in UML class diagram format
	SignalFlow
	-
	SignalFlow Metamodel in UML class diagram format
	zt_SF2FSF
	-
	Folder containing the transformations
	zz_Config
	-
	Folder containing configuration information
	Run the SignalFlow 2 FlatSF transformation model
	Invoke the GReAT Master Interpreter with icon (This is a re
	The transformations can be invoked in various ways
	GR Engine – Performs the transformations in an interpretive
	GR Debugger – Provides a user interface and debugging featur
	Code generator – Converts the transformation into code that
	To run GR Engine, it could be done either :
	In the GReAT Master Interpreter dialog, check the box “Run G
	Directly invoke the GR Engine interpreter with icon .
	The default input file is $/Models/SignalFlow_1.mga
	The output files will be $/Models/outSF1.mga
	To run the GR Debugger
	Open a command prompt and go to the sample directory $/. Inv
	Directly invoke the GR Debugger interpreter with icon .
	To run Code Generator, it could be done either :
	In the same dialog of GReAT Master Interpreter, check the bo
	Directly invoke the Code Generator interpreter with icon ; -
	Open a command prompt and go to the sample directory $/. Inv
	After the files have been generated open the generated Visua
	You can run the generated code with defau�
	The Global Object, Sorting and Distinguished Merging Example
	You can follow the same steps listed above to run these exam
	SignalFlow2FlatSF_test_globalObject.xme – This is the exampl
	SignalFlow2FlatSF_test_sortingFunc.xme – �
	SignalFlow_test_distinguished.xme – This example demonstrate
	Please refer to the GReAT user manual for more information o

