This file documents the various types of changes in metamodel transformation problem. The changes of metamodel can be divided into two categories, atomic and composite. The composite changes can be fulfilled by a sequence of atomic changes under some certain context.

The atomic changes are listed in table 1.

Table 1. Atomic changes of metamodel transformation

	Type of metamodel change
	Old Metamodel
	New Metamodel
	Actions on

Instance Model

	Additions

	1. Add a new class
	[image: image1.png]Class_&

	[image: image2.png]Class_&

Class_B

	None if cardinality is 0. Otherwise, create minimum required Class_B instances within Class_A instances???

	2. Add a new attribute
	[image: image3.png]Class_&

olgAtribute - type

	[image: image4.png]Class_A

olgAtribute : type
newatlibute : tyoe

	Each class instance has new attribute initialized to default value of attribute type (if attribute is required)

	3. Add a new association between two classes
	[image: image5.png]Class_&

Class_B

	[image: image6.png]Class_& Class_B

	None if cardinalities are 0. Multiplicity of cardinalities can’t be allowed since arbitrary association creation is unreasonable?

	4. Add a new association class
	[image: image7.png]Class_&

Class_B

	[image: image8.png]Class_&

[Class_B

Class_C

	None if cardinalities are 0. Multiplicity of cardinalities can’t be allowed since arbitrary association creation is unreasonable?

	5. Add a new inherited class from the base class
	
[image: image9.png]Class A

Class_B

	
[image: image10.png]Class A

Class B [Class_C

	None if Class_C is newly created. Else, Class_C instances inherit new attributes, but inherited associations can’t be arbitrarily created.

	Deletions

	6. Delete a class
	
[image: image11.png]Class_&

Class_B

	
[image: image12.png]{Gisee 8}

	Delete all instances of Class_B (and child objects contained in Class_B instances ???). Delete all dangling associations as well.

	7. Delete an attribute
	
[image: image13.png]Class_A

attibute1 - type
attribute type

	
[image: image14.png]Class_&

attibute1 - type

	Delete attribute from all Class_A instances

	8. Delete the association between two classes
	
[image: image15.png]Class_A |sw x| Class_B

	
[image: image16.png]Class_&

Class_B

	Delete all corresponding associations between Class_A and Class_B instances

	9. Delete the inheritance relationship between two classes
	
[image: image17.png]Class A

Class B [Class_C

	
[image: image18.png]Class A

Class_B

	See above (6) if this implies the complete deletion of Class_C.

Else, Class_C instances lose inherited attributes and associations (they are deleted) but do instances still persist? Who is the parent of Class_C instances if so?

	Modifications

	10. Rename the class
	
[image: image19.png]old

	
[image: image20.png]Class_A_new,

	Change Class_A name for all instances and maintain all associations

	11. Rename the attribute
	
[image: image21.png]Class_&

attribute_old - type

	
[image: image22.png]Class_&

attribute_new : tyoe

	Change attribute name for all instances

	12. Change containment relationship
	
[image: image23.png]Class_&

Class_C

	
[image: image24.png]Class_&

Class_C

Class_B

	If Class_A and Class_C have the same parent and there is one instance of each class in the parent, move all Class_B instances contained in each Class_A instance to each corresponding Class_C instance in the same parent as the Class_A instance. Otherwise, is this allowable without some form of filtering or matching criterion???

	13. Change association end of simple association
	
[image: image25.png]Class_C

Class Alyw on|Class B

	
[image: image26.png][Class_C

i Class_B

	Seems to only make sense if all three classes have only one instance in the same parent. Otherwise, is this allowable without some form of filtering or matching criterion???

	14. Change association end of association class
	[image: image27.png]Class D

Class_&

x| Class_B

Class_C

	
[image: image28.png][Class D

Class_A |sw Class_B

Class_C

	Seems to only make sense if all three classes have only one instance in the same parent. Otherwise, is this allowable without some form of filtering or matching criterion???

	15. Add an inherited class from the base class, and replace the object type of base class in some certain context
	
[image: image29.png]Class_&

	
[image: image30.png]Class A

Class_B

	If Class_A becomes abstract, Class_A instances should be replaced by Class_B instances, and Class_B instances acquire all inherited attributes and associations. Associations originally on the Class_A instances could be carried over to the new Class_B instances as well.

	16. Change the meta type of the class(for example, change Class_A from model type to folder type).
	
[image: image31.png]Class_A
<<Madel>>

	
[image: image32.png]Class_A
=<Folger>>

	Some are allowable, and some should not be. From Model to Folder or Atom to Model should be ok; however, the reverse of each would not be. These cases may need to be enumerated.

	17. Others, like changes of subtype, instance
	
	
	

Following are some composite changes:

1. Change the type:

	Old Metamodel
	New Metamodel
	Actions on Instance Model

	
[image: image33.png]Class_C

o

Class XA

Class_XB

	
[image: image34.png]Class_C

o

Class X

type_attibute - String

	This seems reasonable to carry out directly as the text below indicates, and even associations to/from Class_XA and Class_XB instances could probably be carried over to the Class_X instances.

In the instance model of old meta, for the objects of either type Class_XA or Class_XB, change it into Class_X of new meta, and set the attribute “type_attribute” appropriate value according to its type.

2. Replace the association with attribute

	Old Metamodel
	New Metamodel
	Actions on Instance Model

	
[image: image35.png]Class_&

Class_B

	
[image: image36.png]Class_&

Class_B

28 Boalean

	This also seems perfectly reasonable to carry out directly as the text indicates.

In the instance model of old meta, if the object of type Class_A is connected to an object of type Class_B via association of type Class_C, delete the association in the transformed model of new meta, and set the new attribute “A2B” to value true.

Model Migration Proposal
The objective is to describe the recreation of an instance model of the old meta-model into an instance model of the new meta-model. For each item in the old instance model, we either create an identical item in the new model, a corresponding item or set of items in the new model, or ignore it (in essence, “deleting” it). We may be able to provide this information on a per-item basis, in a tabular column. Consider the following example.
Old meta-model:
[image: image37.png]Wallet

=<hiodel>> |5
o

Car
=<ladel>

Owner: field WodelName :_enum
PayFor
=<<Connection>>
o o | “=Connection™> |
Dallar Dime Nickel
<sttom>> | | <<atom>> | | <<atom>>

Changes:

· Rename class Wallet

· Delete classes Dollar, Dime and Nickel

· Add attribute “Amount” to Wallet

· Delete attribute “ModelName” from Car

· Make Car abstract

· Two new classes inherit from Car

New meta-model:

[image: image38.png]Newivallet

<<Model-> Car
Model B 1] <<hiogel-»
OwnerName: field —
Amount feld
Payror Hoteels Disney
<<Connettion=> <<Model=> <<Model=>

Change Description:

	Old item
	New item
	Action information

	Wallet
	NewWallet
	NewWallet.OwnerName = Wallet.name
NewWallet.Amount = Wallet.Dollar.size()

 + 0.10*Wallet.Dime.size()

 + 0.05*Wallet.Nickel.size()

	Dollar
	Ignore
	Ignore

	Dime
	Ignore
	Ignore

	Nickel
	Ignore
	Ignore

	Car
	HotWheels;

Disney
	if (Car.ModelType == “HotWheels”) {

 CreateNew(HotWheels)

} else {

CreateNew(Disney)

}

	PayFor
	PayFor
	Connect new(Wallet) to new(Car)

· new(Item) must give the element in the new model corresponding to Item in the old model.

· The actual constructs allowed in the “Action information” must be decided (may be modeled on the UDM API)

· Ambiguities must be resolved, or action to be taken under ambiguity must be specified (such as ignore element)

· Incompleteness must be addressed. For instance, if the old and new models are as below:
[image: image39.png]Wodeln Wodels Newttodel | [Newhosel
<AMogel» <Logel-» Soger || “oset
Wocelc Nowtiodeic
Eogel-»

=<ladel>

then the change description must address what happens to the ModelC’s contained in ModelB. It would be incorrect to specify it this way (since NewModelC cannot be created in NewModelB):

	Old item
	New item
	Action information

	ModelC
	NewModelC
	CreateNew NewModelC(new(ModelC.parent))

A better way is:

	Old item
	New item
	Action information

	ModelC
	NewModelC
	if (ModelC.parent.type == ModelA) {

 CreateNew NewModelC(new(ModelC.parent))

}

· We must also address the case when new(Item) will be null.
_1245667031

_1245667036

_1245667039

_1245667042

_1245667044

_1245667046

_1245667043

_1245667040

_1245667037

_1245667033

_1245667034

_1245667032

_1245667026

_1245667028

_1245667029

_1245667027

_1245667021

_1245667023

_1245667024

_1245667022

_1245667018

_1245667019

_1245667016

_1245667017

_1245667013

_1245667015

_1245667011

