
A Generic Modeling Environment

GME 6 User’s Manual
Version 6.0

Institute for Software Integrated Systems
Vanderbilt University

__

Copyright © 2000-2006 Vanderbilt University
All rights reserved

http://www.isis.vanderbilt.edu

This manual was produced using Doc-To-Help®, by WexTech Systems, Inc.

Contents

What is new 6
What is new in version 6.0...6
What is new in version 5.0...7
What is new in version 4.0...7
What is new in version 3.0...8

Introduction 10

Modeling Concepts Overview 11
Model-Integrated Program Synthesis ..11
The MultiGraph Architecture ..11

The Modeling Paradigm..12
Metamodels and Modeling Environment Synthesis ..12

The Generic Modeling Environment 13
GME 6 Main Editing Window...13
GME Concepts...14

Defining the Modeling Paradigm ..14
Models...15
Atoms ..16
Model Hierarchy..17
References ...18

Connections and links..18
Sets ..19
Aspects...20
Attributes ...20
Preferences...21

Using GME 6 22
GME 6 Interfaces...22
The Part Browser ...22
The Attribute Browser ...22
The Model Browser ...23

Model Browser navigation ..24
Model Browser and Interoperation..26
Locking..26

The Model Editor...26
The Editing Window ...26
GME Menus ..27

Annotations..30
Creating Annotations...30
Editing Annotations...30

Generic Modeling Environment User's Manual Contents • i

Implementation issues ...31
Managing Paradigms ...32

New Project ...33
Editor Operations...33

Editing Modes ...33
Miscellaneous operations ..36

Help System...36
Searching objects ...36

Types of the search..37
Regular expressions...37
Defaults ...38

Scripting in GME...38

Type Inheritance 42
Type Inheritance Concepts ..42

Attributes and Preferences...45
References and Sets...45
Decorator enhancements ...45

Libraries 46
Model library support ..46

Decorators 48
Introduction ...48

The IMgaDecorator interface...48
IMgaDecorator Functions..49
Using the Decorator skeleton ..51

Assigning decorators to objects ...51

Metamodeling Environment 53
Introduction ...53

Step by step guide to basic metamodeling ...53
Paradigm..53
Folder ..53
FCO ...54
Atom..55
Reference...55
Connection...56
Set..57
Model ..58
Attributes ...58
Inheritance ...58
Aspect..59

Composing Metamodels ..59
Operators ...59

Generating the Target Modeling Paradigm..61
Aspect Mapping ..61

Attribute Guide ..61
Semantics Guide to Metamodeling..68

High-Level Component Interface 70
Introduction to the Component Interface ...70

Generic Modeling Environment User's Manual Contents • ii

Builder Object Network version 1.0 ..70
What Does the BON Do? ..70
Component Interface Entry Point ..71
Component Interface ...73
Example...79
Extending the Component Interface ..80
Example...83

Meta Object Network ..85
What is MON?...85
Basic MON Classes...85
Meta-Kinds in MON..86
Specific GME Concepts ..87
How to Use MON?..89

Builder Object Network version 2.0 ..90
Architecture of BON2 ...90
Wrapper Classes ..90
Objects’ Lifecycle in Components ..92
Extending Interpreters ...93
Add-ons and Events...94
BON Extension Classes...94
Essential Classes of BON2.. 100
GME Metakinds in the Project .. 101
ConnectionEnds and ReferencePorts... 102
Type Inheritance in BON2 .. 105
Registry, Attributes and Object Preferences.. 105

How to create a new component project.. 106
Extending the Component Interface using the BON Extender interpreter............................. 107

Constraint Manager 112
Features of the new Constraint Manager ... 112

Standard OCL features .. 112
New and Improved features in GME 6.. 113
Limitations and Special Issues .. 113
Types and Constraints (Expressions) .. 116

Using Constraints in GME... 119
Constraints defined by the Paradigm... 119
Constraint Definitions (Functions) .. 120
Syntax and semantic errors.. 121
Evaluating the constraints.. 122
Altering the evaluation process ... 123
Run-time exceptions and constraint violations.. 124
Constraints in the model.. 126

Appendix A - Database Setup 130
GME 6 Database Support .. 130

Server side installation .. 130
Client side setup .. 130
Preparing GME for multiuser access... 131
Using GME with the ODBC backend ... 131

Appendix B – OCL and GME 132
OCL Language... 132

Type Conformance .. 132
Context of a Constraint.. 133

Generic Modeling Environment User's Manual Contents • iii

Types of Constraints (Expressions) ... 133
Common OCL Expressions ... 135
Type Related Expressions ... 141
Resolution Rules.. 145

Predefined OCL Types .. 149
ocl::Any... 149
ocl::String .. 150
ocl::Enumeration ... 153
ocl::Boolean... 153
ocl::Real .. 154
ocl::Integer... 156
ocl::Type.. 157
ocl::Collection ... 158
ocl::Set... 160
ocl::Bag ... 162
ocl::Sequence... 163

GME Kinds and Meta-Kinds ... 165
gme::Object ... 165
gme::Folder ... 167
gme::FCO .. 168
gme::Connection ... 171
gme::Reference.. 171
gme::Set... 171
gme::Atom... 172
gme::Model ... 172
gme::Project... 173
gme::RootFolder.. 174
gme::ConnectionPoint ... 174

Appendix C – BON and MON 176
Meta Object Network Classes.. 176

MON::Project .. 176
MON::MetaObject... 177
MON::Object... 178
MON::Folder ... 178
MON::FCO.. 178
MON::Atom .. 179
MON::Model ... 180
MON::Connection ... 180
MON::ConnectionSpecification .. 181
MON::ConnectionRole.. 181
MON::Set .. 182
MON::Reference ... 182
MON::RegistryNode ... 183
MON::Constraint... 184
MON::Containment... 184
MON::ContainmentPart .. 185
MON::Aspect .. 186
MON::Attribute ... 186
MON::FolderContainment .. 187
MON::ConnectionEnd... 187
MON::ReferenceAssociation... 188
MON::SetMembership .. 188
MON::ModelInAspect... 188
MON::AttributeAggregation ... 189

Generic Modeling Environment User's Manual Contents • iv

Builder Object Network Classes.. 189
BON::Project ... 189
BON::Object.. 191
BON::Folder.. 193
BON::ConnectionEnd.. 195
BON::ReferencePort.. 198
BON::FCO .. 199
BON::Atom ... 201
BON::Model.. 202
BON::Connection.. 204
BON::Set ... 206
BON::Reference .. 208
BON::ReferencePortContainer.. 209
BON::TypeInhObject .. 210
BON::Instance ... 210
BON::Type .. 210
BON::Attribute.. 211
BON::RegistryNode .. 212
BON::FCORegistryNode .. 214
BON::FCOExRegistryNode .. 215
BON::ModelRegistryNode.. 217
BON::ConnectionRegistryNode.. 217
BON::Event ... 218
BON::EventListener .. 219
BON::EventListenerPool... 219
BON::Visitor ... 220

Appendix D – References 221
Model Integrated Computing References .. 221

Glossary of Terms 222

Generic Modeling Environment User's Manual Contents • v

What is new

What is new in version 6.0

Among the significant improvements in this version are:

• Dispatch compatible method signatures introduced in the IDL files

• BON1 improvements: folder can contain other fcos than models

• Parser gives better location info upon errors, exceptions

• Toolbars are now floatable/dockable

• Component icons (on toolbar) are programmable (enable/disable based
on the active model)

• Paradigm files (.xmp , .mta) if dropped on the GME window (while no
project is opened) will be registered (in user registry)

• Non-sticky connection modes added to main toolbar

• 'View in parent' command (shortcut: Shift + Enter, or Shift + DblClick)
introduced in ActiveBrowser to select and focus an element in its
parent (in the editing area)

• ReadOnly/ReadWrite permission flag can be applied to object
hierarchies (accessible through the Access menu in the Browser)

• Model Migration Tool added

• Content-type attribute added to MetaGME paradigm. Mime type or
extension (identified by the leading dot) can be specified there. The
registered editor will be invoked as if the user would have initiated
Open or Edit action on such a file from Windows Explorer.

• Java BON bugfixes (contributed by Alex Goos)

• Dispatch support for native OLE drag'n'drop

• Updated Python component framework (PyGME)

http://cape.vanth.org/Development/PyGME/

Generic Modeling Environment User's Manual What is new • 6

What is new in version 5.0

Among the significant improvements in this version are:

• Updated STLport C++ library resulting performance enhancements.

• GME is now developed and compiled with Microsoft Visual
Studio.NET 2003.

• Reliability improvements in Constraint Manager and in Expression
Checker

• Mga.dtd is no longer needed to be present in the project folder for XSL
translations

• New preference setting added for annotations: control whether to
inherit them in Subtypes/Instances or not

• Copy Smart feature: refined for better cross project copying

• File drag and drop allowed to main GME window

• Default Zoom level (per application) preference setting introduced

• Port label length can be changed for models and for model references
(see Miscellaneous Preferences/Port Label Length setting)

• Active Scripting enriched with 'it' object (represents the active model).
Documentation on the scirpting feature added to this manual.

• BonExtender supports classes with up to 6 baseclasses in BON2

• BON2 CREATED_EVENT handling improved for add-ons

• BON2 connection methods are fixed to work properly (regarding
whether reference-port or fco is connected)

• Several JavaBON problems fixed

What is new in version 4.0

Among the significant improvements in this version are:

• Bugzilla bug tracking. Please, report problems with GME at
http://bugzilla.isis.vanderbilt.edu/query.cgi

• Mailing list for GME users. Sign up at
http://list.isis.vanderbilt.edu/mailman/listinfo/gme-users

• New Builder Object Network (BON2). BON2 is using STL instead of
MFC. Object creation is on-demand enabling lightweight interpreters.

Generic Modeling Environment User's Manual What is new • 7

• New and enhanced MetaInterpreter along with skeleton code generator
for BON2. BON2 is automatically extended based on the metamodel,
hence it automatically provides a domain-specific API.

• Java BON framework is added. Through our bi-directional JAVA-
COM bridge now you can write your interpreters in Java. Check out
Lesson 8 of the Tutorial.

• External text editor support for multiline attributes (configurable
through the GME File menu/Settings dialog).

• Periodic autosave feature added (configurable through the GME File
menu/Settings dialog).

• Enhanced printing and print preview.

• Printing to Windows Metafile.

• Enhanced zooming mode. In addition to discrete zoom levels, arbitrary
zooming of the selected area is also supported.

• Runtime event logging (configurable through the GME File
menu/Settings dialog). Log files are placed under the <USER
PROFILE>/Application Data/GME folder. Please, include the log file
if possible.

• Application specific notifications can be sent through the MGA layer.

• The XML parser does signal the beginning and the completion of the
import process, thus your add-on can disregard other events during
importations.

• The GUI now supports OLE Automation. See the type library in
GME.exe for further reference.

• Canonical XML dump of GME projects, that is entities are now
ordered in the XME files.

• New Table Editor plug-in is introduced: to use it, open File/Register
Components, select the GME Table Editor, and press Toggle.
Afterwards, it can be launched from the component toolbar or the File
menu/run Plugins command.

• New default decorator is included providing nicer visualization.
Type/instance visualization is enhanced and configurable through
model preferences. The old decorator is still available in the release.

• Object and connection autorouter preference settings are now available
from the context menus.

• Dispatch based add-ons are supported.

• Many other features, improvements and bug-fixes.

What is new in version 3.0

Among the significant improvements in this version are:

Generic Modeling Environment User's Manual What is new • 8

• A new OCL-compatible constraint manager with a graphical user
interface enabling among many things the specification of project- or
model-specific constraints.

• Advanced search utility in its own modeless dialog box.

• Improved look and feel.

• Builder Object Network (BON) is in a shared directory now making
interpreter migration a breeze.

• Many other features, improvements and bug-fixes.

Generic Modeling Environment User's Manual What is new • 9

Introduction

The Generic Modeling
Environment, GME 6, is
configurable model-
integrated program synthesis
tool.

The Generic Modeling Environment (GME 6), is a Windows©-based, domain-
specific, model-integrated program synthesis tool for creating and evolving domain-
specific, multi-aspect models of large-scale engineering systems. The GME is
configurable, which means it can be “programmed” to work with vastly different
domains. Another important feature is that GME paradigms are generated from
formal modeling environment specifications.

The GME includes several other relevant features:

• It is used primarily for model-building. The models take the form of
graphical, multi-aspect, attributed entity-relationship diagrams. The
dynamic semantics of a model is not the concern of GME – that is
determined later during the model interpretation process.

• It supports various techniques for building large-scale, complex
models. The techniques include: hierarchy, multiple aspects, sets,
references, and explicit constraints. These concepts are discussed later.

• It contains one or more integrated model interpreters that perform
translation and analysis of models currently under development.

In this document we describe the commonalities of GME that are present in all
manifestations of the system. Hence, we deal with general questions, and not
domain-specific modeling issues. The following sections describe some general
modeling concepts and the various functions of the GME.

Generic Modeling Environment User's Manual Introduction • 10

Modeling Concepts Overview

Model-Integrated Program Synthesis
Model-integrated program
synthesis is one method of
performing model-integrated
computing.

One approach to MIC is model-integrated program synthesis (MIPS). A MIPS
environment operates according to a domain-specific set of requirements that
describe how any system in the domain can be modeled. These modeling
requirements specify the types of entities and relationships that can be modeled; how
to model them; entity and/or relationship attributes; the number and types of aspects
necessary to logically and efficiently partition the design space; how semantic
information is to be represented in, and later extracted from, the models; analysis
requirements; and, in the case of executable models, run-time requirements.

In MIPS, formalized models capture various aspects of a domain-specific system's
desired structure and behavior. Model interpreters are used to perform the
computational transformations necessary to synthesize executable code for use in the
system’s execution environment–often in conjunction with code libraries and some
form of middleware (e.g. CORBA, the MultiGraph kernel, POSIX) – or to supply
input data streams for use by various GOTS, COTS, or custom software packages
(e.g. spreadsheets, simulation engines) When changes in the overall system require
new application programs, the models are updated to reflect these changes, the
interpretation process is repeated, and the applications and data streams are
automatically regenerated from the models.

Once a modeling paradigm has been established, the MIPS environment itself can be
built. A MIPS environment consists of three main components: (1) a domain aware
model builder used to create and modify models of domain-specific systems, (2) the
models themselves, and (3) one or more model interpreters used to extract and
translate semantic knowledge from the models.

The MultiGraph Architecture
MultiGraph is a toolset for
creating domain-specific
modeling environments.

The MultiGraph Architecture (MGA) is a toolset for creating MIPS environments.
As mentioned earlier, MIPS environments provide a means for evolving domain-
specific applications through the modification of models and re-synthesis of
applications. We now discuss the creation of a MIPS environment.

Generic Modeling Environment User's Manual Modeling Concepts Overview • 11

The Modeling Paradigm
A modeling paradigm
defines the family of models
that can be created using the
resultant MIPS environment.

The process begins by formulating the domain’s modeling paradigm. The modeling
paradigm contains all the syntactic, semantic, and presentation information regarding
the domain – which concepts will be used to construct models, what relationships
may exist among those concepts, how the concepts may be organized and viewed by
the modeler, and rules governing the construction of models. The modeling
paradigm defines the family of models that can be created using the resultant MIPS
environment.

Both domain and MGA experts participate in the task of formulating the modeling
paradigm. Experience has shown that the modeling paradigm changes rapidly during
early stages of development, becoming stable only after a significant amount of
testing and use. A contributing factor to this phenomenon is the fact that domain
experts are often unable to initially specify exactly how the modeling environment
should behave. Of course, as the system matures, the modeling paradigm becomes
stable. However, because the system itself must evolve, the modeling paradigm must
change to reflect this evolution. Changes to the paradigm result in new modeling
environments, and new modeling environments require new or migrated models.

Metamodels and Modeling Environment Synthesis
A metamodel is a
formalized description of a
particular modeling
language, and is used to
configure GME itself.

Metamodels are models of a particular modeling environment. Metamodels contain
descriptions of the entities, attributes, and relationships that are available in the
target modeling environment. Once a metamodel is constructed, it is used to
configure GME. This approach allows the modeling environment itself to be evolved
over time as domain modeling requirements change.

Generic Modeling Environment User's Manual Modeling Concepts Overview • 12

The Generic Modeling
Environment

GME 6 Main Editing Window
The figure below shows various features and components associated with the GME
main editing window.

GME 6 Main Editing Window

The GME main editing window has the following components:

• Titlebar: Indicates the currently loaded project.

• Menubar: Commands for certain operations on the model.

• Toolbar: Icon button shortcuts for several editing functions. Placing the
mouse cursor over a toolbar button briefly displays the name/action of
the button.

• Modebar: Buttons for selecting and editing modes.

Generic Modeling Environment User's Manual The Generic Modeling Environment • 13

• Editing area: The main model editing area containing the model
editing windows.

• Partbrowser: Shows the parts that can be inserted in the current aspect
of the current model.

• Statusbar: The line at the bottom, which shows status and error
messages, current edit mode (e.g. EDIT, CONNECT, etc.), zoom
factor, paradigm name (e.g. SF), and current time.

• Attribute Browser: Shows the attributes and preferences of an object.

• Model Browser: Shows either the aggregation hierarchy of the project,
the type inheritance hierarchy of a model, or a quick overview of the
current modeling paradigm.

These features will be described in detail in later sections.

GME Concepts
As mentioned above, the GME is a generic, programmable tool. However, all GME
configurations are the same on a certain level, simply because “only” the domain-
specific modeling concepts and model structures have changed. Before describing
GME operation, we briefly describe the domain-independent modeling concepts
embodied in all GME instances.

Defining the Modeling Paradigm
To properly model any large, complex engineering system, a modeler must be able to
describe a system’s entities, attributes, and relationships in a clear, concise manner.
The modeling environment must constrain the modeler to create syntactically and
semantically correct models, while affording the modeler the flexibility and freedom
to describe a system in sufficient detail to allow meaningful analysis of the models.
Issues such as what is to be modeled, how the modeling is to be done, and what types
of analyses are to be performed on the constructed models must be formalized before
any system is built. Such design choices are represented by the modeling paradigm.
Therefore, creating the modeling paradigm is the first, and most important, step in
creating a DSME.

A modeling paradigm is defined by the kind of models that can be built using it, how
they are organized, what information is stored in them, etc. When GME is tailored
for a particular application domain, the modeling paradigm is determined and the
tool is configured accordingly. Typically the end-users do not change these paradigm
definitions, and they are fixed for a particular instance of GME (of course, they may
change as the design environment evolves).

Examples of modeling paradigms are as follows:

• Paradigms for modeling signal flow graphs and hardware architecture
for high-performance signal processing domains.

• Paradigms for process models and equipment models used in chemical
engineering domains.

• Paradigms for modeling the functionality and physical components of
fault-modeling domains.

• Paradigms that describe other paradigms. These are referred to as meta
paradigms, and are used to create metamodels. These metamodels are

Generic Modeling Environment User's Manual The Generic Modeling Environment • 14

then used to automatically generate a modeling environment for the
target domain.

Metamodels are formal
descriptions of concrete
domain specific
environments.

Once an initial modeling paradigm has been formulated, an MGA expert constructs a
metamodel. The metamodel is a UML-based, formal description of the modeling
environment’s model construction semantics. The metamodel defines what types of
objects can be used during the modeling process, how those objects will appear on
screen, what attributes will be associated with those objects, and how relationships
between those objects will be represented. The metamodel also contains a
description of any constraints that the modeling environment must enforce at model
creation time. These constraints are expressed using the standard predicate logic
language, Object Constraint Language (OCL) with some additional features and
limitations according to metamodeling environment of GME. Note that, as
mentioned earlier, metamodels are merely models of modeling environments, and as
such can be built using the GME. A special metamodeling paradigm has been
developed that allows metamodels to be constructed using the GME.

Once a metamodel has been created, it is used to automatically generate a domain-
specific GME. The GME is then made available to one or more domain experts who
use it to build domain-specific models. Typically, the domain expert’s initial
modeling efforts will reveal flaws or inconsistencies in the modeling paradigm. As
the modeling paradigm is refined and improved, the metamodel is updated to reflect
these refinements, and new GMEs are generated.

With Interpreters users can
perform analysis on models
or translate them

Once the modeling paradigm is stable (i.e. the MGA and domain experts are
satisfied that the GME allows consistent, valid models to be built), the task of
interpreter writing begins. Interpreters are model translators designed to work with
all models created using the domain-specific GME for which they were designed.
The translated models are used as sources to analysis programs or are used by an
execution environment.

Once the interpreters are created, environment users can create domain models and
perform analysis on those models. Note, however, that model creation usually begins
much sooner. Modelers typically begin creating models as soon as the initial GME is
delivered. As their understanding of the modeling environment and their own
systems grows, the models naturally become more complete and complex.

We now discuss the modeling components in greater detail.

Models
Default icon representing
models in GME

By model we mean an abstract object that represents something in the world. What a
model represents depends on what domain we are working in. For instance,

• a Dataflow Block is the model for an operator in the signal processing
domain,

• a Process model represents a functionality in a plant in the chemical
engineering domain,

• a Network model represents a hardware interconnection scheme in the
multiprocessor architecture domain.

A model is, in computational terms, an object that can be manipulated. It has state,
identity, and behavior. The purpose of the GME is to create and manipulate these
models. Other components of the MGA deal with interpreting these models and
using them in various contexts (e.g. analysis, software synthesis, etc.).

Some modeling paradigms have several kinds of models. For instance:

Generic Modeling Environment User's Manual The Generic Modeling Environment • 15

• in a signal processing paradigm there can be Primitive Blocks for
simple operators and Compound Blocks (which may contain both
primitive blocks and other compound blocks) for compound operators.

• in a multiprocessor architecture modeling paradigm there can be
models for computational Nodes and models for Networks formed from
those nodes.

A model typically has parts—other objects contained within the model. Parts come
in these varieties:

• atoms (or atomic parts),

• other models,

• references (which can be thought of as pointers to other objects),

• sets (which can contain other parts), and

• connections.

Model with atomic parts as
link ports

If a model contains parts, we say that the model is the parent of its parts. Parts can
have various attributes. A special attribute associated with atomic parts allows them
to be designated as link parts. Link parts act as connection points between models
(usually used to indicate some form of association, relationship, or dataflow between
two or more models). Models containing other models as parts are called compound
models. Models that cannot contain other models are called primitive models. If a
compound model can contain other models we have a case of model hierarchy.

In the GME, each part (atom, model, reference, or set) is represented by an icon.
Parts have a simple, paradigm-defined icon. If no icon is defined for a model, it is
shown using an automatically generated rectangular icon with a 3D border.

Atoms
Default icon for atoms

Atoms (or atomic parts) are simple modeling objects that do not have internal
structure (i.e. they do not contain other objects), although they can have attributes.
Atoms can be used to represent entities, which are indivisible, and exist in the
context of their parent model.

A primitive model SubGeneratorC containing four atoms

Examples of atoms are as follows:

Generic Modeling Environment User's Manual The Generic Modeling Environment • 16

• An output data port on a dataflow block in a signal processing
paradigm.

• A connection link on a processor model in a hardware description
paradigm.

• A process variable in a process model in a chemical engineering
paradigm.

Model Hierarchy
As mentioned above, models can contain other models as parts — models of the
same or different kind as the parent model. This is a case of model hierarchy. The
concept can be explained as follows: models represent the world on different levels
of abstraction. A model that contains other models represents something on a higher
level of abstraction, since many details are not visible. A model that does not contain
other models represents something on a lower level of abstraction. This hierarchical
organization helps in managing complexity by allowing the modeler to present a
larger part of the system, albeit with less detail, by using a higher level of
abstraction. At a lower level of abstraction, more detail can be presented, but less of
the system can be viewed at one time.

Examples where hierarchy is useful are as follows:

• Hierarchical dataflow diagrams in a signal processing paradigm.

• Process model hierarchy in a chemical engineering paradigm.

• Hierarchically organized networks of processors in a paradigm
describing multiprocessors.

Compound model SuperGen containing several Generator models

Generic Modeling Environment User's Manual The Generic Modeling Environment • 17

References
Default icon for references
pointing to null

References are parts that are similar in concept to pointers found in various
programming languages. When complex models are created (containing many,
different kinds of atomic and hierarchical parts), it is sometimes necessary for one
model to directly access parts contained in another. For example, in one dataflow
diagram a variable may be defined, and in another diagram of the system one may
want to use that variable. In dataflow diagrams, this is possible only by connecting
that variable via a dataflow arc, “going up” in the hierarchy until a level is reached
from where one can descend and reach the other diagram (a rather cumbersome
process).

GME offers a better solution – reference parts. Reference parts are objects that refer
to (i.e. point to) other modeling objects. Thus, a reference part can point to a model,
an atomic part of a model, a model embedded in another model, or even another
reference part or a set. A reference part can be created only after the referenced part
has been created, and the referenced part cannot be removed until all references to it
have been removed. However, it is possible to create null references, i.e. references
that do not refer to any objects. One can think of these as placeholders for future use.
Whether a particular reference can be established (i.e. created) or not depends on the
particular modeling paradigm being used.

Examples of references are as follows:

• References to variables in remote dataflow diagrams in a signal
processing paradigm.

• References to equipment models in a process model in a chemical
engineering paradigm.

• References to nodes of a multiprocessor network in a paradigm
describing hardware/software allocation assignments.

As mentioned above, the icon used to represent the reference part is user-defined.
Model (or model reference) references that do not have their own icon defined have
an appearance similar to the referred-to model, but without 3D borders.

Connections and links
Merely having parts in a model is not sufficient for creating meaningful models —
there are relationships among those parts that need to be expressed. The GME uses
many different methods for expressing these relationships, the simplest one being the
connection. A connection is a line that connects two parts of a model. Connections
have at least two attributes: appearance (to aid the modeler in making distinctions
between different types of connections) and directionality (as distinguished by the
presence or absence of an arrow head at the “destination” end of the line). Additional
connection attributes can be defined in the metamodel, depending on the
requirements of the particular modeling paradigm.

The actual semantics of a connection is determined by the modeling paradigm. When
the connection is being drawn, the GME checks whether the connection is legal or
not. All legal connections are defined in the metamodel. Two checks are made to
determine the legality of a connection. First, a check is made to determine if the two
types of objects are allowed to be connected together. Second, the direction of the
connection needs to be checked.

Generic Modeling Environment User's Manual The Generic Modeling Environment • 18

GME edit mode bar with the
“Connections” mode button
selected.

To make connections, the modeler must place the GME in the “Add Connections”
mode. This is done by clicking on the Connections mode button (see figure to left)
on the Modebar. A connection always connects two parts. If the part is an icon that
represents a model, it may have some connection points, or links. Logically, a link is
a port through which the model is connected to another part within the parent model.
Links on a model icon represent specific parts contained in the model that are
involved in a connection. In these cases, when the connection is established, care
should be taken to build the connection with the right link. The link shows up on the
icon of the model part as a miniature icon with a label. When the connection is built,
the system uses these miniature icons as sensitive “pads” where connections may
start or end. Moving the mouse cursor over one of the pads shows the complete
name of the link part. Furthermore, not only atoms, but models, sets and references
except for connections can act as a ports.

Some examples of connections and links are as follows:

• Connections between dataflow blocks in a signal processing paradigm.

• Connections between processes on a process flow sheet of a chemical
engineering paradigm.

• Connections between failure modes (indicating failure propagation) in
a fault modeling paradigm.

Connections can be seen between atomic parts and models, as in the case of the
Input Signal atomic part connecting to the ports labeled “In” on each of the
Generator models shown earlier, and between ports of models, as in the case of
the “Out” ports of each Generator model connecting to the “In” port of another
Generator model. Notice that, in this paradigm, connections are directional (used
to indicate information flow between the models).

Sets
Default icon for sets

Models containing objects and connections show a static system. In some cases,
however, it is necessary to have a model of a dynamic system that has an architecture
that changes over time. From the visual standpoint this means that, depending on
what “state” the system is in, we should see different pictures. These “states” are not
predefined by the modeling paradigm (in that case they would be aspects), but rather
by the modeler. The different pictures should show the same model, containing the
same kinds of parts, but some of the parts should be “present” while others should be
“missing” in a certain “states.” In other words, the modeler should be able to
construct sets and subsets of particular objects (even connections).

In GME, each set is represented by an icon (user-defined or default). When a
particular set is activated, only the objects belonging to that set are visible (all other
parts in the model are “dimmed” or “grayed out.”) Parts may belong to a single set,
to more than one set, or to no set at all.

Generic Modeling Environment User's Manual The Generic Modeling Environment • 19

GME edit mode bar with the
“Set” mode button selected.

To add or remove parts from sets, the set must first be activated by placing the
graphical editor into Set Mode. This is done by clicking the Set Mode button (see
left) on the edit mode bar. Next, a set is activated by right-clicking the mouse on it.
Once the set has been activated, parts (even connections) may be added and/or
removed using the left mouse button. To return to the Edit Mode, click the Normal
Mode button on the edit mode bar.

The following examples of using sets:

• State-dependent configuration of processing blocks in a signal
processing paradigm.

• State dependent process configuration in a chemical engineering
paradigm.

• State-dependent failure propagation graphs in a fault modeling
paradigm.

Aspects
As mentioned earlier, we use hierarchy to show or hide design detail within our
models. However, large models and/or complex modeling paradigms can lead to
situations where, even within a given level of design hierarchy, there may be too
many parts displayed at once. To alleviate this problem, models can be partitioned
into aspects.

An aspect is defined by the kinds of parts that are visible in that aspect. Note that
aspects are related to groups of parts. The existence or visibility of a part within a
particular aspect is determined by the modeling paradigm. A given part may also be
visible in more than one aspect. For every kind of part, there are two kinds of
aspects: primary and secondary. Parts can only be added or deleted from the model
from within its primary aspect. Secondary aspects merely inherit parts from the
primary aspects. Of course, different interconnection rules may apply to parts in
different aspects.

When a model is viewed, it is always viewed from one particular aspect at a time.
Since some parts may be visible in more than one aspect while others may visible
only in a single aspect, models may have a completely different appearance when
viewed from different aspects (after all, that’s why aspects exist!)

The following are examples of aspects:

• “Signal Flow” and “States” aspects for a signal processing paradigm.

• “Process Flow Sheet” and “Process Finite State Machine” aspects for a
chemical engineering paradigm.

• “Component Assignment” and “Failure-Propagation” aspects of a fault-
modeling paradigm.

Attributes
Models, atoms, references, sets and connections can all have attributes. An attribute
is a property of an object that is best expressed textually. (Note that we use the word
“text” for anything that is shown as text, including numbers, and a choice from a
finite set of symbolic or numeric constants.)

Generic Modeling Environment User's Manual The Generic Modeling Environment • 20

Typically objects have multiple attributes, which can be set using “non-graphical”
means, such as entry fields, menus, buttons, etc. The attribute values are translated
into object values (e.g. numbers, strings, etc.) and assigned to the objects. The
modeling paradigm defines what attributes are present for what objects, the ranges of
the attribute values, etc. Interpreting these values is left to the model interpreters,
though the users may create constraints using OCL for the attributes to ensure that
their values are valid.

Examples of attributes are as follows:

• Data type of parameters in a signal processing paradigm.

• Units for process parameters in a chemical engineering paradigm.

• Mean-time-between-failure specifications for components in a fault
modeling paradigm.

The attribute box associated with a Parameter atom called Pi.

An object’s attributes can be accessed by right-clicking on the object and selecting
Attributes from the menu, causing the Attribute Browser activated.

Preferences
Preferences are paradigm-independent properties of objects. The five different kinds
of first class objects (model, atom, reference, connection, set) each have a different
set of preferences. The most important preference is the help URL. Others include
color, text color, line type, etc. Preferences are inherited from the paradigm
definition through type inheritance unless this chain is explicitly broken, by
overriding an inherited value. For more details, see the chapter on type inheritance.

Preferences are accessible through the context menus and for the current model
through the Edit menu.

Default preferences can be specified in the paradigm definition file (XML). User
settings can be applied to either the current object, or the kind of object globally in
the project. The checkbox in the preferences dialog box specifies this scope
information. If the “for Kind” checkbox is set, the information is stored in the
compiled, binary paradigm definition file, not in the XML document. This means
that a subsequent parsing of the XML file overwrites preference settings. This
limitation will be eliminated in a later release of GME 6.

Even when the global scope is selected, this only applies to objects that themselves
(or any of their ancestors) have not overridden the given preference.

Generic Modeling Environment User's Manual The Generic Modeling Environment • 21

Using GME 6

GME 6 Interfaces
The GME interacts with the user through two major interfaces:

• the Model Browser, and

• the Graphical Editor.

Models are stored in a model database and are organized into projects. A project is a
group of models created using a particular modeling paradigm. Within a project, the
models are further organized into modeling folders. Folders themselves and models
in one folder can be organized hierarchically, although standalone models can also
be present.

The Model Browser is used to view or look at the entire project “at a glance.” All
models and folders can be shown, and folders, models and any kind of parts can be
added, moved, and deleted using the Model Browser controls. This is described in
more detail below.

The Part Browser
The Part Browser window shows the parts that can be inserted into the current
model in the current aspect. It shows all parts except for connections. At the bottom
of the Part Browser, tabs show the available aspects of the current model. Clicking
on a tab will change the aspect of the current model to the selected one. It also
attempts to change the aspect of all the open models. If a particular model does not
have the given aspect, its current aspect remains active.

The Part Browser can be used to drag a single object at a time and drop it either in
any editor window or in the Model Browser. If a reference is dragged, a null
reference is created because the target object is unspecified. Remember that
references (null references included) can be redirected at any time by dropping a new
target on top of them (see more detailed discussion where the drag and drop
operations are described).

Note that the Part Browser window, just like the Model Browser window, is
dockable; it can float as an independent window or it can be docked to any side of
the GME 6 Main window.

The Attribute Browser
Attributes and Preferences are available in a modeless dialog box, called the
Attribute Browser. Since there is no OK button, changes are updated immediately.
More precisely, changes to toggle buttons, combo boxes (i.e. menus) and color

Generic Modeling Environment User's Manual Using GME 6 • 22

pickers are immediate. Changes to single line edit boxes are updated when either
“Enter” is hit on the keyboard or the edit box loses the input focus, i.e. you click
outside the box. The only difference for multiline edit boxes is that they use the
Enter key for new line insertion, so hitting it does not updated the value.

The object selection for the attribute browser works as follows. The context menu
access to Attributes and Preferences, now even from the Model Browser, works.
Furthermore, simply selecting an object or inserting, dropping or pasting it selects
that object for the Attribute browser. If more then one object is selected – in the
Model Browser or in the Model Editor - the attribute browser will allow only the
common attributes of these objects.

At the top of the dialog there are three tabs, one for the attributes one for the
preferences and another for the properties. Note that the Attribute Browser window,
just like the Model Browser window, is dockable; it can float as an independent
window or it can be docked to any side of the GME 6 Main window.

The Model Browser
As mentioned earlier, the GME is a configurable graphical editing environment. It is
configured to work within a particular modeling paradigm via a paradigm definition
file. Paradigm definition files are XML files that use a particular, GME 6 specific
Document Type Definition (DTD). Models cannot be created and edited until a
paradigm definition file (or its compiled, binary version with .mta extension) has
been opened.

Once a project has been loaded, the GME opens a Model Browser window. The
Model Browser is primarily used to organize the individual models that make up an
overall project, while the graphical editor is used for actually constructing the
project’s individual models.

Model Browser showing folders and models.

The most important high-level features of the Model Browser are accessible through
the three tabs displayed at the top of the Model Browser. These tabs deal with the
Aggregate, Inheritance, and Meta hierarchies.

The Aggregate tab contains a tree-based containment hierarchy of all folders,
models, and parts from the highest level of the project, the Root Folder. The
aggregate hierarchy is ignorant to aspects, and is capable of displaying objects of any
kind. More information on the aggregate hierarchy will be provided shortly.

Generic Modeling Environment User's Manual Using GME 6 • 23

Model Browser with each tab selected

The Inheritance tab is used explicitly for visualizing the type inheritance hierarchy
(described in detail later). It is entirely driven by the current model selection within
the aggregate tree. For example, the current selection in the aggregate tree in the
figure above is a model "GeneratorBase". It has one subtype, called “SubGenBase”,
and two instances, bearing the name “GeneratorA” and “GeneratorB”. This
type/instance relationship is shown in the Inheritance tab. We also have an instance
model of the “SubGenBase” subtype, called “SubGenBase”. In the Aggregate tab
the letter “S” denotes a subtype, while a letter “I” can be found in front of instances.

The Meta tab shows the modeling language at a glance: it displays the legally
available array of Folders and objects that can be added at any level within the
aggregate hierarchy. For example, at the "Root Folder" level we can add "Folder"
folders. Within these folders, we can add models Primitive and Compound. From
these models, more parts can be added.

Model Browser navigation
Arrow keys can navigate the selection in vertical directions. The [Backspace] key
moves the selection to the parent object. The [Delete] key allow for deletion of the
current selection. Object name editing is achieved through delayed clicking on an
object's name. Multiple selection is achieved through [Shift] or [Control] clicks.
Incremental searching is offered for all three tabs through the text entry field
immediately below the Aggregate, Inheritance, and Meta tab selections. The search
is limited to the currently expanded section of the tree to avoid time-consuming
search in a potentially large database. If a global search is desired, pressing the
[Asterisk] key when the root folder is selected fully expands the tree and the search
becomes project-wide.

Most hidden functionality offered within the GME 6 Browser is available through
contextual menus and drag and drop operations. Currently contextual menus are
only offered for selections found within the Aggregate tab. Contextual information
is primarily used for easily inserting new objects based on the current selection, or
for capturing the contents of current selections for Edit functions (Copy, Paste,
Delete, etc.).

Generic Modeling Environment User's Manual Using GME 6 • 24

Model Browser context menus

Based on the Aggregate tab selection shown above, five different kinds of atoms are
available for insertion (Models can also be inserted, but within this Model we have
specified that the paradigm not allow any References or Sets). Note that connections
cannot be added using the Browser.

Similarly, several Edit options are available in the form of Undo, Redo, Copy,
Paste, etc. Sorting options allow for the all of the objects and their children to be
sorted by a specific style. The Tree Browser Options menuitem displays a dialog
used for specifying the types of objects to be displayed in the Aggregate tab. For
example, the user can choose not to view connections in the browser. To preserve
the state of the aggregate tree (eg.:expanded objects) in the Windows registry the
checkbox in bottom of the options dialog must be set. Interpreting, Constraint
Checking, and context sensitive Help are also available.

Drag and drop is implemented in the standard Windows manner. Multiple selection
items may serve as the source for drag and drop. Modifiers are important to note for
these operations:

• No modifier: Move operation

• [Ctrl]: Copy (signified by "plus" icon over mouse cursor)

• [Ctrl]+[Shift]: Create reference (signified by link icon over mouse
cursor)

• [Alt]: Create Instance (signified by link icon over mouse cursor)

• [Alt]+[Shift]: Create Sub Type (signified by link icon over mouse
cursor)

If a drop operation fails, then a dialog will indicate so. Drop operations can occur
within the Browser itself, allowing this to be an effective means to restructuring a
hierarchy. Drop operations can only be performed onto a Model or a Folder.

Generic Modeling Environment User's Manual Using GME 6 • 25

Model Browser and Interoperation
Double-clicking on any model in the tree (or pressing the [Space] or [Enter] key
when a model is selected) will open that model for editing in the graphical model
editor. Double-clicking an atom, reference or set, will open up the parent model,
select the given object and scroll the model, so that the object becomes visible.

Locking
Using the MS Repository or ODBC backends, distributed multi-user access is
allowed to the same project. To ensure consistency, GME 6 implements a
sophisticated locking mechanism.

There are four different types of locks from the perspective of a user. An object can
be not locked, read-only locked, write-only locked or exclusively locked. When an
object is read-only locked, then other users may access the same object, but only in
read-only mode. The read-only lock guarantees that all information read from the
object is up-to-date and cannot be modified by other users while the lock is held.
When an object is write-only locked, then others can still access the same object
write-only, but not read-only or exclusively. The write-only lock guarantees that the
object is kept modifiable, while the write-only lock is held. It gives no guarantee,
however, that any information read from the object is up-to-date. Reference objects
are the prime reason for introducing the write-only lock. Multiple users must be
allowed to make references to the same target model. To make matters worse,
different users have different undo queues, possibly containing modifications to the
same objects. Holding a write-only lock on the target model and exclusive locks on
the reference objects solves this problem. Finally, an exclusive lock is equivalent to
holding read-only and write-only locks simultaneously.

In summary, an object is either not locked at all, read-only locked by a few users,
write-only locked by a few users, or exclusively locked by a single user. Note that
the object lock states are visualized in the Model Browser.

The Model Editor

The Editing Window
When a model is selected for editing, an Editor window opens up to allow editing of
that model. The Editor window shows the contents of the selected model in one
aspect at a time.

Generic Modeling Environment User's Manual Using GME 6 • 26

A typical model Editing window with an open context menu.

A typical Editor window is shown above. The status line near the top begins with an
icon indicating whether the current model is a type (T) or instance (I). Next to it is a
field indicating the model’s name – System in this case. Next to the model’s name
is the kind field, indicating the kind of model (e.g. Connector, Compound,
Network, etc.) being edited. Continuing to the right, the Aspect field indicates
that this model is being viewed in the SignalFlowAspect. Remember, a model’s
appearance, included parts, and connection types can change as different aspects are
selected. Finally, the right side of the status line shows the base type of this model in
case it is a model type (if it is an archetype, it does not have a base type, so the field
shows N/A), or the type model in case the current model is an instance.

GME Menus
On the GME Menubar, the following commands are available:

File: Project- and model-related commands.

The File menu is context-sensitive, with choices depending on whether or not a
paradigm definition file and/or project has been loaded and whether there is at least
one model window open. If no model window is open, the following items show:

New Project: Creates a new, empty project and allows registering a new
modeling paradigm (discussed in detail later).

Open Project: Opens an existing project from either a database or a binary
file with the .mga extension (discussed in detail later).

Close Project: Saves and closes the currently open project (if any).

Save Project: Saves the current project to disk.

Save Project As: Saves the current project with a new name.

Abort Project: Aborts all the changes made since last save and closes
project.

Generic Modeling Environment User's Manual Using GME 6 • 27

Export XML: GME 6 uses XML (with a specific DTD) as a export/import
file format. This command saves the current project in XML format.

Import XML: Loads a previously exported XML project file. Note that the
file must conform to the DTD specifications in the mga.dtd file. If no
paradigm is loaded, GME 6 tries to locate and load the corresponding
paradigm definitions.

Update through XML: Allows updating the current model in case of a
paradigm change. If the user has a project open in one GME 6, while
she modifies the metamodels in another GME 6 and regenerates the
paradigm, this command allows updating the models by automatically
exporting toXML and importing from it. Note that any changes that
invalidate the existing models, for example deleting a model kind that
has instances in the project, will cause this operation to fail. However,
adding new kinds of objects, attributes, etc, or deleting unused concepts
will work.

Register Paradigms: Registers a new modeling paradigm (discussed in
detail later).

Register Component: Registers an interpreter DLL with the current
paradigm. A dialog box appears that makes it possible to register as
many interpreters as the user wishes.

Check All: Invokes the Constraint Manager to check all constraints for the
entire project.

Display Constraints: All the constraints defined in the meta-model are
displayed. These constraints can be disabled globally, or on object basis
in this dialog. Options of constraints’ evaluation are also available.

Settings: Sets GME 6-specific parameters. Currently, the only supported
options are to set the path where the icon files are located on the current
machine and whether GME should remember the state of the docking
windows. For the paths the user can type in a semicolon separated list
of directories (the order is significant from left to right), or use the add
button in the dialog box to add directories one-by-one utilizing a
standard Windows File Dialog box. Icon directories can be set for
system-wide use or for the current user only. GME 6 searches first in
the user directories followed by the system directories.

Exit: Closes GME 6.

Once a model window is open, the following additional items become available:

Run Interpreter: As mentioned earlier, model interpreters are used in the
GME to extract semantic information from the models. This menu
choice invokes the model interpreter registered with the paradigm using
the currently selected model as an argument. Depending on the specific
paradigm and interpreter, such an argument may or may not be
necessary. A submenu makes it possible to select an interpreter if there
is more than one interpreter available.

Run Plug-Ins: Plug-ins are paradigm independent interpreters. This
command makes it possible to run the desired one.

Check: Invokes the Constraint Manager to check the constraints for the
current model.

Print: Allows the user to print the contents of the currently active window.
It scales the contents to fit on one page.

Generic Modeling Environment User's Manual Using GME 6 • 28

Print Setup…: Standard Windows functionality.

After a project has been loaded or created, the following menu items are active:

Edit: Editing commands.

Undo, Redo: The last ten operations can be undone and redone. These
operations are project-based, not model/window-based! The Browser,
Editor, and interpreters share the same undo/redo queue.

Clear Undo Queue: Models that can be potentially involved in an
undo/redo operation are locked in the database (in case of a database
backend, as opposed to the binary file format), so that no other user can
have write access to them. This command empties the undo queue and
clears the locks on object that are otherwise not open in the current
GME 6 instance.

Project Properties: This command displays a dialog box that makes it
possible to edit/view the properties of the current project. These
properties include its name, author, creation and last modification date
and time, and notes. The creation and modification time stamps are
read-only and are automatically set by GME 6.

Items available only when a model Editor window is open:

Show Parent: Active when the current model is contained inside another
model. Selecting this option opens the parent model in a new editing
window.

Show Basetype: Active when the current model is a type model but not an
archetype (i.e. it is not a root node in the type inheritance hierarchy).
This command opens the base type model of the current model in an
editing window.

Show Type: Active when the current model is an instance model. This
command opens the type model of the current model in an editing
window.

Copy, Paste, Delete, Select All: Standard Windows operations.

Paste Special: A submenu makes it possible to paste the current clipboard
data as a reference, subtype or instance. Paste Special only works if the
data source is the current project and the current GME 6 instance.

Cancel: Used to cancel a pending connect/disconnect operation.

Preferences: Shows the preferences available for the current model (see
detailed discussion in a separate section below).

Registry: The registry is a property extension mechanism: any object can
contain an arbitrarily deep tree structure of simple key-value pairs of
data. Selecting this menu item opens up a simple dialog box where the
current object’s registry can be edited. Special care must be taken when
editing the registry, since it is being used by the GME 6 GUI to store
visualization information and domain-specific interpreters may use it
too.

Synch Aspects: The layout of objects in an aspect is independent of other
aspects. However, using this functionality, the layout in one source
aspect can be propagated to multiple destination aspects. A dialog box
enables the selection of the source and destination aspects. The objects
that participate in this operation can also be controlled here. The default
selection is all the visible objects in the source aspect if none of them

Generic Modeling Environment User's Manual Using GME 6 • 29

were selected in the editing window, otherwise, only the selected ones.
Two check boxes control the order in which objects are moved. This is
important in case objects compete for the same real estate. Priority can
be given to the selected objects and within the selected objects the ones
that are visible in the source aspect.

View: Allows the toggling on and off of the Toolbar, the Status Bar (bottom of the
main window), the Browser window, the Attribute Browser, and the Part Browser
window.

Window:

Cascade, Tile, Arrange Icons: Standard Windows window management
functions.

Help:

Contents: Accesses the ISIS web server and shows the contents page of
this document.

Help: Shows context-sensitive, user-defined help (if available) or defaults to
the appropriate page of this document. See details in a subsequent
section.

About: Standard Windows functionality.

Annotations
GME 6 provides annotations for attaching notes to your models. These multi-line
textual annotations are paradigm independent and available in all of your models.

Annotations are not aligned to the model grid (as opposed to real modeling entities),
and they can overlap each other, but they are always lower in the Z-order than
normal objects. Like every model contained artifact, the visibility and position of
annotations are aspect dependent.

Creating Annotations
You can create a new annotation in an opened model from the context menu Insert
Annotation if you right-click on an empty area in the model. GME generates a name
for your annotation, and normally there is no need to modify this. It also opens the
Annotations dialog where you can customize the text and appearance of your
comment.

Editing Annotations
There are several methods for editing your annotations. You can open the
Annotations dialog from the main menu bar Edit | Annotations or from the context
menu Annotations. You can also launch this dialog with double-clicking on one of
your annotations.

Generic Modeling Environment User's Manual Using GME 6 • 30

Annotation editor

On the left side of the dialog in the figure above all the annotations in the active
model are available. On the right-hand side panel you can customize the selected
commentary. The Name, Text, Color, Background and Font settings are self-
explanatory. The Visibility sub-panel enables you to fine tune the position and
visibility in an aspect based manner. All the aspects of the active model (and a
special DEFAULT aspect) are listed on the left side. The checkboxes represent the
visibility information in the proper aspect (if an annotation is visible in the
DEFAULT aspect, it is visible in all the others, so in this case the other checkboxes
are irrelevant.) In the X and Y input boxes you can specify the position of your
annotation in a specific aspect (or the default position.) You can also clear (and set to
default) the position with setting the Default Pos check-box.

Implementation issues
Annotations are stored in the registry of the model. All the registry keys and
explanation of them can be found in the table below. The visualization of annotations
is handled by custom decorator COM objects ‘Mga.Decorator.Annotator’), which
use the very same infrastructure as other custom drawing objects.

Generic Modeling Environment User's Manual Using GME 6 • 31

Registry Key Description
/annotations This is the root registry key for

annotations
/annotations/<AnnotationName> The value of this key is the text of the

comment
/annotations/<AnnotationName>/color This key stores the text color of the

comment as a 24 bit hexadecimal
number

/annotations/<AnnotationName>/bgcolor This key stores the background color
of the comment as a 24 bit
hexadecimal number

/annotations/<AnnotationName>/font The encoded form of the specified font
(Win32 LOGFONT structure)

/annotations/<AnnotationName>/aspects The key stores the default position of
the annotation

/annotations/<AnnotationName>/aspects/* If this key is defined the annotation is
visible in all aspects

/annotations/<AnnotationName>/aspects/
<AspectName>

If defined, the annotation is visible in
the specific aspect. If it contains a
position code, this will be the position
of your comment in this aspect.

Managing Paradigms

The Register Paradigm item in the File menu displays a dialog box where the user
can add or modify paradigms. This dialog box is also displayed as the first step of the
New Project command (see below).

Like other items recorded in the Windows registry, paradigms can be registered
either in the current user's own registry
[HKEY_CURRENT_USER/Software/GME/Paradigms] or in the common system
registry [HKEY_LOCAL_MACHINE/Software/GME/Paradigms]. If a paradigm is
registered in both registries, the per-user registry takes precedence. When changing
the registration of paradigms it can be specified where the changes are to be
recorded. Non-administrator users on Windows systems generally do not have write
access to the system registry, so they can only change the per-user registration.

Paradigms are listed by their name, status, connection string and current version ID.
The name is what primarily identifies the paradigm. The status is 'u' (user) or 's'
(system) depending where the paradigm is registered. The connection string specifies
the database access information or the file name in case of binary files. Version ID is
the ID of the current generation of the paradigm.

The registry access mode is selectable in the lower right corner of the dialog box.

Pressing the Add from file… button displays a file dialog where the user can select
compiled binary files (.mta) or XML documents. It is possible to store paradigm
information in MS Repository as well. The Add from DB… is used to specify
paradigms stored in a database, like MS Access.

Generic Modeling Environment User's Manual Using GME 6 • 32

If the new paradigm specified was not yet registered, it will be added the list of
paradigms. If, however, the paradigm is an update to an existing paradigm, it will
replace the existing one, but the old paradigm is also kept as a previous generation.
(The only exception is when the paradigms are specified in their binary format (i.e.
not XML) and the file or connection name of the new generation corresponds to that
of the previous one.) This way existing models can still be opened with the legacy
paradigms they were created with. For new models, however, the current generation
is used always.

Paradigms can be unregistered using the Remove button. Note that the paradigm file
is not deleted.

Different generations of an existing paradigm can be managed using the
Purge/Select button. This brings up another dialog showing all the generations of
the selected paradigm. One option is to set the current generation, the one used for
creating new models. The other option allows unregistering or also physically
deleting one or several of the previous generations. (Whether the files are deleted is
controlled by the checkbox in the lower right corner.)

Important: New paradigm versions are not always compatible with existing binary
models. If a model is reopened, GME offers the option to upgrade it to the new
paradigm. If the upgrade fails, XML export and re-import is needed (the previous
generation of the paradigm is to be used for export). XML is usually the more robust
technique for model migration; it only fails if the changes in the paradigm make the
model invalid. In such a situation the paradigm should be temporarily reverted to
support the existing model, edited to eliminate the inconsistencies, and then reopened
with the final version of the paradigm.

New Project
Selecting the New Project item in the File menu displays the dialog box described in
the previous section. All the features mentioned are available, plus an additional
button, Create New... which is used to proceed with the creation of a new project.

Once the desired paradigm is selected, pressing the OK button displays another small
dialog where the user can specify whether to store the new project in MS Repository
or a binary file. Pressing OK creates and opens a new blank project. At this point, the
only object available in the project is the root folder shown in the Model Browser.
Using the context menu (right-clicking the Project Name), the user can add folders
and other objects, as defined in the paradigm. Double-clicking a model opens it up in
a new Editor window.

Editor Operations
Using the Editor window the user can edit the models graphically. Menus and
editing operations are context sensitive, preventing illegal model construction
operations. (Note, however, that even a syntactically correct model can be invalid
semantically!) This section gives a brief overview of common editor operations, such
as changing editing modes, creating and destroying models, placing parts, etc.

Editing Modes
The graphical editor has six editing modes – Normal, Add Connection, Delete
Connection, Set Mode, Zoom Mode and Visualization. The Editing Modebar,

Generic Modeling Environment User's Manual Using GME 6 • 33

located (by default) just to the left of the main editing window, is used to change
between these modes.

GME Editing Mode Bar

The figure above indicates the buttons used to select different editing modes. The
Editing Modebar is a dockable Windows menu button bar. It can be dragged to
different positions in the editor, floated on top of the editing window, or docked to
the side of the editor.

Normal Mode
Normal mode is used to add/delete/move/copy parts within editing windows. Models
(from the Model Browser) and parts (from the Part Browser) may be copied by left-
click-dragging the objects into the Editor window. Standard Windows keyboard
shortcuts [Ctrl-C] to Copy, [Ctrl-V] to Paste) may also be used. A copy operation
(the default when dragging from the Part Browser) is indicated by the small “+”
symbol attached to the mouse cursor during the left-click-drag operation.

Parts and models may be moved and/or copied between models, too. Here, the
normal left-click-dragging operation causes a move operation instead of a copy. To
copy parts and models between or within models, hold down the [Ctrl] key before
dropping.

New parts and models are given a default name (defined in the modeling paradigm).
Right-clicking a part (even connection) brings up a context menu. Choose
Properties to edit/view an object’s properties. Choose Attributes to edit its
paradigm-specific attribute values.

Right-clicking on the background of a model window brings up another context
menu that makes it possible to insert any part that is legal in the current aspect of the
given model.

As mentioned earlier, reference parts act as pointers to objects, providing a reference
to that part or model. References are created by holding down [Ctrl-Shift] while
dropping parts into a new model from another model window or from the Browser.
When dragging a reference from the Part Browser it is not necessary to hold down
any keys because the source already specifies that a reference is to be created. In this
case, however, a null reference is created since there is no target object specified
(similar to using the context menu to insert a reference).

References can be redirected, i.e. the object they refer to can be changed. Simply
drop an object on top of an existing reference, and if the object kind matches, the
reference is redirected. Note that the type hierarchy places restrictions on this
operation as well (see later in the Type Inheritance chapter).

Subtypes and instances of models can be created by holding down [Alt-Shift] and
[Alt] keys respectively during the drop operation. Type inheritance is described in a
separate chapter.

Generic Modeling Environment User's Manual Using GME 6 • 34

Parts and models may be removed by left-clicking to highlight them, and either
selecting Delete from the Edit menu, or by pressing the [Delete] key. Note that any
connections attached to an object will also be deleted when that part or model is
deleted. Also remember that parts can only be deleted after all references to them
have already been deleted.

Add Connection Mode
This mode allows connections to be made between modeling objects. Connections
may exist between two atomic parts, between two model ports (think of these as
connection points on models), or between an atomic part and a model port.
Remember, however, that connections are a paradigm-specific notion and will only
be allowed between objects specified by the paradigm definition file as being
allowed to be connected together.

Remember that connections are inherently directional in nature. Connections are
made by first placing the editor in the Add Connection Mode, then left-clicking the
source object, followed by left-clicking on the destination object.

It is not necessary to go to this mode to create a connection. Instead, in Edit mode
right clicking on the desired source of a new connection and selecting Connect in
the context menu changes the cursor to the connect cursor. A connection will be
made to the object that is left clicked next. (Or by selecting the Connect command
on the destination object as well.) Note that any other operation, such as mode
change, window change, new object creation, cancels the instant connection
operation.

Remove Connection Mode
By placing the graphical editor in the Remove Connection Mode, connections
between objects can be removed by simply left-clicking on the connection itself or
the source and/or destination parts.

Set Mode
Set parts are added to a model just like any other part. However, their members can
only be specified when the editor is in Set Mode. Once the editor is in this mode,
right-clicking a set will cause all parts (even connections) in the model that are not
part of the given set to be “grayed out.” Left-clicking object toggles their
membership in the set. As they are added/removed to the set, they regain/lose their
color and appearance.

Zoom Mode
The Zoom Mode allows the user the view the models at different levels of
magnification. The supported range is between 10% and 300%. Left clicking
anywhere in a model window zooms in, while right-clicking zooms out. The zoom
level is window-specific.

Visualization Mode
The Visualization Mode allows single objects and collections of objects
(“neighborhoods” of objects) to be visually highlighted with respect to other
modeling objects. This is useful when examining and/or discussing complex models.

To enter the Visualization Mode, select the Visualization Mode button on the GME
editing mode bar (see picture above). This will cause all visible parts and
connections to become “grayed out.” Next, the user may click on objects using either

Generic Modeling Environment User's Manual Using GME 6 • 35

the left or right mouse buttons to make them fully visible again. Left- and right-
clicking have different effects, as described below.

Left-clicking on any part toggles the visibility of the object. For connections, their
source and destination objects are toggled. The user may continue to select parts in
this manner, highlighting/hiding more and more objects. Right-clicking on a part will
toggle the visibility of the object and the objects at the ends of its connections. Note
that exactly those connections are highlighted at any one time that connect
highlighted objects.

Miscellaneous operations
The following operations are only accessible from the toolbar:

• Toggle grid: At zoom levels 100% or higher a grid can be displayed in
the model editor window. GME objects always snap to this fine grid,
whether they are visible or not, to facilitate alignment of the objects.

• Refresh: Clicking the paintbrush button forces GME 6 to repaint all the
windows.

In the current model Editpr window there is a selected list of objects highlighted by
little frames. Using the Arrow keys on the keyboard, these objects can be nudged by
one grid cell in the selected direction, provided that there are no collisions. Note that
GME 6 does not allow overlapping objects.

Connections in GME 6 are automatically routed. The user only needs to specify the
end points of a connection and an appropriate route will be automatically generated
that will avoid all objects and try to provide a visually pleasing connection layout.

The built-in context-sensitive help functionality is described in the next section.

Help System
GME 6 provides context-sensitive, user-defined help functionality. This is facilitated
by the “Help URL” preference of objects. This preference is inherited from the
paradigm definition and through the type inheritance hierarchy exactly like any other
object preference. For more information on this inheritance, see the separate chapter
on type inheritance.

When the user selects help on a context menu or the Help menu Help item for the
current model (also the [F1] key), GME 6 looks up the most specific help URL
available for the given object. If no help URL is found, the program defaults to the
appropriate section of the User's Manual located on the ISIS web server.

When the appropriate URL is located, GME 6 invokes the default web browser on
the current machine and displays the contents of the URL. If no network connection
is available, the help system will be unable to display the information unless the web
server is running on the current machine or the URL refers to a local file.

Searching objects
The Search facility in GME 6 has been updated from a plugin to a full ActiveX
component. This allows you to click or double click on a search result and go

Generic Modeling Environment User's Manual Using GME 6 • 36

directly to that object in GME. Also, the search can stay open while you go back and
forth from GME to the search window.

Types of the search
A snapshot of the Search screen is shown below. Whenever the Search is invoked,
the search screen pops up. The Search window can be opened by executing the Edit
| Find command, using the [CTRL-F] shortcut or clicking the binocular icon in the
toolbar.

The Search provides for three types of searches.

General Search
This search option is used for finding Models, Atoms, Sets and/or Reference objects
in the project. It has the following options which are AND relation with each other:

• Name – used to specify the name of the object. It takes a Regular
Expression as an input. The Search checks for any names that have
patterns specified by this field.

• Role Name – used to specify the role name of the object. It takes a
Regular Expression as an input. The Search checks for any role names
that have patterns specified by this field.

• Kind Name – used to specify the kind name of the object. It takes a
Regular Expression as an input. The Search checks for any kind names
that have patterns specified by this field.

• Attribute – used to specify the attribute name appearing in the object.
It takes a Regular Expression as an input. The Search checks for any
attributes with names that have patterns specified by this field.

• Type – specifies the type of the attribute that is being searched for.

• Value – specifies the value of the attribute being searched for. It can
take in String, Integer, Float and Boolean (0 or 1) values.

Meta-Kind Search
The user can search for objects specifying the meta-kinds. These can be Atoms,
Models, References, Sets. Connections are not supported.

Special Reference Search
The Search for NULL References option is used to look for references pointing to
null. More restrictions can be applied specifying the search criteria. When you
conduct any search, clicking on a search result object will change the “NULL” into
the name of that object. Then the user may search for references pointing to that
object with the special search checkbox. Select the Special Reference Search, then
deselect it to set it back to NULL.

Regular expressions
The Name, Role, Kind & Attribute fields can be specified using the regular
expressions. This section documents the valid input kinds that the Search tool shall
accept.

Regular expressions are case-sensitive.

Generic Modeling Environment User's Manual Using GME 6 • 37

Check the Match Whole Word Only if you don’t want a Regular Expression based
search for the first four fields.

Syntax of the expressions:

• Any permutation of characters, numbers & symbols such as “_”, “-” is
valid. A few special symbols that are used are “.”, “*”, “+”, “(”, “)”,
“[”, “]”, “^”, “$”.

• The regular expression should be well formed, i.e. all the opening
brackets should have corresponding closing brackets.

• Writing “GME” will mean all the string containing the letters “GME”
will be returned.

• Writing “GME*” will return all strings containing “GM”, “GME”,
“GMEE”, “GMEEE” and so on.

• Writing “GME+” is the same as “GME*” with the exception of only
“GM”.

• Writing “GME.*” is the same as “GME”.

Defaults

The Search functionality has been implemented assuming certain default conditions.

On invocation the search tool has the following default inputs:

• All the Search for options are selected.

• The Match Whole Word Only option is not checked.

The inputs can be specified in the following ways:

• Any of the input boxes being empty implies that the all the objects will
be returned without checking that input.

• The attribute Type & Value fields require the attribute Name to be
specified.

• The Value field shall not be considered as a regular expression for
searching the attribute value. The value specified has to be exact.

• Taking everything to the extreme, as soon as the search tool is invoked,
on pressing the Search button, all the eligible objects will be returned,
if no extra inputs are specified.

Scripting in GME

Beginning GME version 5 scripting has been introduced. In the bottom part of the
console window the user can type in her instructions/programs. The user-preferred
scripting language can be set in the File/Settings menu. The default scripting engine
is JScript, however in this document Python script samples will be used
(Python.AXScript.2).

Generic Modeling Environment User's Manual Using GME 6 • 38

Script Engine selection

The scripting feature enables the user to automate several operations in the GME
world. These may include GUI related operations (i.e. Export XML) or MGA related
model inquires, modifications operating on the currently opened model.

Hello World in GME

Beside the features provided by the selected scripting language (built-in methods,
variables or packages) three GME-specific objects are available in the GME
scripting environment: gme, project and it.

The first object gme, represents the running GME application instance and
implements the IGMEOLEApp interface as defined in the Gme.idl file. This
interface allows the user to access various user interface elements of the modeling
environment i.e. panels like ActiveBrowser and ObjectBrowser, or to execute project
related commands like: invoking an interpreter on the currently opened model (if
any).

hiding the ActiveBrowser window

gme.panels[0].Visible = 0

check the constraints

gme.CheckAllConstraints()

invoking an interpreter

gme.RunComponent('Mga.Interpreter.ComponentC')

The lifetime of the gme object is the same as that of the application. The project
variable is valid while a project is opened in the main application window. This
variable implements the IMgaProject interface defined in Mga.idl. For accessing the
inner elements inside an MGA project transactions must be used.

Generic Modeling Environment User's Manual Using GME 6 • 39

gme.OpenProject('MGA=f:\\sf-sample.mga')

terr = project.CreateTerritory(None, None, None)

project.BeginTransaction(terr)

mf = project.RootFolder.ChildObject(‘MainFolder’)

mf.Name = ‘main_folder’

mf.ChildFCO(‘MainCompound’).Name = ‘main_compound’

project.CommitTransaction()

gme.CloseProject(1)

In the code snipped above a sample SF model is opened, the Folder named
MainFolder, and the Compound named MainCompound are renamed. Operations
accessing the objects inside a project are enclosed in a transaction. In case the
transaction commit fails AbortTransaction must be used. Beware, that during a user-
initiated transaction, another transaction should not be started. This means that
during scripting, if a transaction has begun, user interface operations (like selection
of an object in the View or ActiveBrowser with the mouse pointer) must be
suspended by the user untill the transaction is committed or aborted.

The it variable represents the currently active model window. It is accessible only
while a project is opened, and at least one model window is opened. Should the
active model window be closed, the variable automatically will refer to the newly
selected active window, if any. The it object implements the IGMEOLEIt interface
(defined in Gme.idl). The main benefit of using this object is the ease of use of MGA
related operations on a higher level than that offered by the IMgaObject, IMgaFCO
and IMgaFolder interfaces (see Mga.idl), and it allows the user to automate some
repetitive tasks.

The methods it provides require either object names, or IMgaFCO pointers as
incoming parameters, the latter method names being suffixed with “FCO”. The code
sample below shows duplicating (clone) of objects:

clones object (if any) named “InSignal”, renames the clone to
“ClonedInSignal” and returns it

clonedInSignalPtr = it.Duplicate(“InSignal”, “ClonedInSignal”)

cloning clonedInSignal object 4 times, with different names

for i in range(5): it.DuplicateFCO(clonedInSignalPtr, “twiceClonedInSignal”
+ str(i))

cloning “twiceClonedInSignal2” object, using the it.Child() method

it.DuplicateFCO(it.Child(“twiceClonedInSignal2”), “thriceClonedInSignal”)

Some other MGA related operations the user may use are: Create, Refer, Include,
Connect, ConnectThruPort, SetAttribute, SubType, Instantiate as well as their
FCO suffixed counterparts.

The name based Duplicate method requires that “InSignal” must be present in the
active model, the pointer based DuplicateFCO method does not enforce this,
allowing the clonable object to be in a different model in the same project. Exception
to this rule is IncludeFCO requiring that the set object and its to-be-member must be
in the same model.

All these operations (i.e. Duplicate, IncludeFCO, Connect etc.) use methods defined
in IMgaFCO or IMgaModel interfaces, that require to be executed inside
transactions. That is why if no user transaction was active, the method does the
duplication or connecting task between Begin and CommitTransaction calls. If the

Generic Modeling Environment User's Manual Using GME 6 • 40

user initiates this command from a transaction, it is detected and another transaction
is not started, and when the method exits the transaction remains open. However, to
help users manage transactions, and let them avoid tedious typing (creating
territories, passing them to over to BeginTransaction, etc.) simple parameterless
BeginTransaction and CommitTransaction methods of the it object are provided.

Connect and ConnectFCO methods are used to connect object in one model. Two
objects have to be specified (by their name or the pointers) and the connection role
may be given optionally. If an empty string is given as connection role, then the
object are connected if one possible connection role exists between the source and
destination.

ConnectThruPort method is provided to establish connections between ports,
referenceports. The connection role again can be left empty. The source and
destination are identified by specifying two roles for each. The first one is the name
of the container, the second is the name of the port. The container might be a model
or a reference. If one port is involved in the intended connection, for example only
at the source side, the destination must be specified by leaving the second role
parameter empty.

Using ShowFCO method the user can jump to another model, making that the new
active model, using a path syntax similar to that used on Unix (slashes as delimiters,
‘..’ to step one model up in the hierarchy). The path used must identify uniquely an
fco, otherwise the command will not succeed.

The Prev and Next methods can be used to cycle through the already opened models.

PresAspect and NextAspect cycle through the aspects of the current model.

Generic Modeling Environment User's Manual Using GME 6 • 41

Type Inheritance

Type Inheritance Concepts
The type inheritance concepts in GME 6 closely resemble those of object-oriented
programming languages. The only significant difference is that in GME, model types
are similar in appearance to model instances; they too are graphical, have attributes
and contain parts. By default, a model created from scratch is a type. A subtype of a
model type can be created by dragging the type and dropping it while pressing the
[Alt+Shift] key combination. An instance is created in similar manner, but only the
[Alt] key needs to be used.

A subtype or an instance of a model type depends on the type. There is one
significant rule that is different for subtypes and instances. New parts are allowed in
a subtype, but not in an instance. Otherwise, parts can be renamed, set membership
can be changed, and references can be redirected in both subtypes and instances.
Parts cannot be deleted and connections cannot be modified in either subtypes or
instances.

Any modification of parts in a type propagates down the inheritance hierarchy. For
example, if a part is deleted in a type, the same part will be automatically deleted in
all of its instances and subtypes and instances of subtypes all the way down the
inheritance hierarchy.

Types can contain other types as well as instances as parts. The mixture of
aggregation and type inheritance introduces another kind of relationship between
objects. This is best illustrated through an example. In the figure below, there are two
root type models: the Engine and the Car. The car contains an instance of an engine,
V6, and an ABS type model. V6 is an instance of the Engine; this relationship is
indicated by the dash line. Aggregation is depicted by solid lines.

Generic Modeling Environment User's Manual Type Inheritance • 42

Model Dependency Chains

When we create a subtype of the Car (Cool Car above), we indirectly create another
instance of the Engine (V6) and a subtype of the ABS type. This is the expected
behavior as a subtype without any modification should look exactly like its base
type. Notice the arrow that points from V6 in Cool Car to V6 in Car. Both of these
are instances, but there is a dependency between the two objects. If we modify V6 in
Car, V6 in Cool Car should also be modified automatically for the same reason: if
we don't modify Cool Car it should always look like Car itself. The same logic
applies if we create an instance of Cool Car (My Car above). It introduces a
dependency (among others) between V6 in My Car and V6 in Cool Car. As the
figure shows, this forms a dependency chain from V6 in My Car through V6 in Cool
car and V6 in Car all the way to the Engine type model.

What happens if we modify V6 in Cool Car by changing an attribute? Should an
attribute change in V6 in Car propagate down to V6 in Cool Car and below? No, that
attribute has been overridden and the dependency chain broken with respect to that
attribute. However, if the same attribute is changed in V6 in Cool Car, that should
propagate down to V6 in My Car unless it has already been overridden there. The
same logic applies to preferences.

The figure below shows the same set of models, but only from the pure type
inheritance perspective.

Generic Modeling Environment User's Manual Type Inheritance • 43

Type Inheritance Hierarchy

Let's summarize the rules of type inheritance in GME 6.

• Parts cannot be deleted in subtypes or instances.

• Parts can be added in subtypes only.

• Part changes in a type model propagate down the type inheritance
hierarchy unconditionally.

• Aggregation and type inheritance introduce dependency chains between
models.

• Attribute and preference changes, set membership modification and
reference redirection propagate down the dependency chain. If a
particular setting has been overridden in a certain model in the
dependency chain, that breaks the chain for that setting. Changes up in
the chain do not propagate to the given model or below.

• The rules for reference redirection are as follows. A null reference in a
type can be redirected in any way that the paradigm allows down the
dependency chain. A reference to a type in a type model can only be
redirected to subtypes or instances of the referred-to type or any
instances of any its subtypes. A reference to an instance model in a type
model cannot be redirected at all down the hierarchy. Obviously, a
reference in an archetype can be redirected in any way the paradigm
allows.

• To avoid multiple dependency chains between any two objects, in
version 1.1 or older, only root type models could be explicitly derived
or instantiated. This restriction has been relaxed. Now, if none of a type
model’s descendants and ascendants are derived or instantiated, then
the model can be derived or instantiated. This means, for example, that
a model, that has nor subtypes or instances itself, can contain a model
type AND its instances. This relaxed restriction still does not introduce
multiple dependency chains.

Generic Modeling Environment User's Manual Type Inheritance • 44

Attributes and Preferences
The Attributes and the Preferences tabs each show the items either in gray color or
in black color. Items with gray color have the default or inherited value, which
means that the value is not given explicitly for this object. If the user assigns a new
value to an attribute or preference, the item will be show in black color. An item can
be reset to the inherited value by pressing [Ctrl-D] while the item is active.

References and Sets
As mentioned before, references can be redirected (with some restrictions) and set
membership can be changed in subtypes and instances. The propagation of settings
along the dependency chain is true here too. Changing the settings breaks the
dependency chain for the given object. However, the setting can be easily reset by
selecting the Reset item in the appropriate context menu.

References can also be reset to null by using the Clear item in the context menu.
However, this is only allowed if the container model is an archetype or if the
inherited value of the reference is null itself (otherwise it would violate the rules of
inheritance in GME 6).

Decorator enhancements
Since GME 6 the default decorator is able to display more information about objects
regarding the type inheritance. The user may turn off or on these information in
meta-modeling time or modeling time, too.

• On models T, S or I letter is displayed according to the object type
information.

• For instances below the name of the object, the name of the type or
subtype is shown with small font.

Generic Modeling Environment User's Manual Type Inheritance • 45

Libraries

Model library support
Starting with v 2.0, GME supports model libraries, an important mechanism for
reusing design artifacts. Libraries are ordinary GME projects; indeed every GME
project (including the ones that import libraries themselves) can be imported in a
project as a library. The only prerequisite is that both the library and the target
project are based on the same version of the same paradigm.

When a library is imported, it is copied into the target project in whole, so that the
root folder of the library becomes an ordinary (non-root folder) in the target. The
copy is indicated with a special flag that warrants read-only access to this part of the
target project.

The primary way of using libraries is to create subtypes and instances from the
library objects. It is also possible to refer library objects through references. Apart
from being read-only, objects imported through the library are equivalent to objects
created from scratch.

Library objects can easily be recognized in the tree browser. The library root is
indicated with a special icon, and if the browser displays access icons, all library
objects are marked to indicate read-only access.

To import a library in a project, the Attach library... command of the Model
Browser context menu is used. Evidently, it is possible to attach libraries to folders
only. The folder that receives the library must be a legal container in the root folder
according to the paradigm. Since many paradigms do not allow the root folder to be
instantiated at other points in the model tree, the root folder of any project is exempt
from this rule, i.e. it is possible to attach a library to the root folder even if the
paradigm does not allow that.

If the original library project changes, it is not automatically reflected in the projects
that import it. It is possible, however, to refresh the imported library images through
the Refresh library... function in the browser context menu. It is possible to specify
an alternate name for the library, in case it has been moved, for example.

When a library is refreshed, changes in the library are propagated to the library
image and to the subtypes and instances created from the library objects. During this
process, complex scenarios can occur. First, objects may have been deleted from the
library, which means that images of these objects and associations (references,
connections) to them need to be deleted. Another typical case is when an association
is changed in the library, which requires changing of the associations that depend on

Generic Modeling Environment User's Manual Libraries • 46

the changed object, and may also require changing other associations (like
connections going through references) as well.

Generally, it is recommended to carefully check the models after a refresh operation,
especially if non-trivial changes were applied to the library. Mapping the old and
new library objects is based on the relative ID-s (RelID-s). Relative ID-s are unique
identifiers of objects belonging to the same parent (i.e. folder or model). When an
object is deleted, its RelID is not reused for a long time (until the RelID space of
about 100 million is not running out), so it is practically safe to identify objects by
RelID-s. The identification based on RelID-s works sufficiently by itself in most
cases. There may be exceptional situations, however, when RelID-s need to be
manually changed to provide a suitable mapping (e.g. when an object is
inadvertently deleted from a library, and must be restored manually). The object
'Properties..' dialog boxes (available through the context menu) can be used to
manually change individual object RelID-s. (When changing RelID-s, be aware that
setting RelID-s incorrectly may corrupt a whole project.)

Generic Modeling Environment User's Manual Libraries • 47

Decorators

Introduction
GME v1.2 and later implements object drawing in a separate plugable COM module
making domain-specific visual representation a reality. In earlier versions of GME
one could only specify bitmap files for objects. This method is still supported by the
default decorator component shipped with GME 6.

Replacing the default implementation basically consists of two steps. First we have
to create a COM based component, which implements the IMgaDecorator COM
interface. Second, we have to assign this decorator to the classes in our metamodel
(or for the objects in our model(s) if we want to override the default decorator
specified in the metamodel).

GME instantiates a separate decorator for each object in each aspect, so we have to
keep our decorator code as compact as possible. Decorator components always have
to be in-process servers. Using C++, ATL or MFC is the recommended way to
develop decorators.

The IMgaDecorator interface
The following diagram shows the method invocation sequence on the
IMgaDecorator interface. Understanding the protocol between GME and the
decorators is the key to developing decorators. All the methods on the decorator
interface are called by GME (there is no callback mechanism). The direction column
in the diagram shows the direction of the information flow.

GME always calls your methods in a read-only MGA transaction. You must not
initiate new transactions in your decorator. SaveState() method is the only exception
to this rule. This method is called in a read-write transaction, therefore, this is the
only place where you can store decorator specific information in the MGA project.

Generic Modeling Environment User's Manual Decorators • 48

GME Dir Decorator
 => decorator class constructor
 => GetFeatures([out] features)

=> SetParam([in] name, [in]value)
<= GetParam([in] name, [out] value)

 => Initialize([in] mgaproject, [in] mgametapart, [in] mgafco)
 <= GetPreferredSize([out] sizex, [out] sizey)
 <= GetPorts([out] portFCOs)
 => SetLocation([in] sx, [in] sy, [in] ex, [in] ey)

<= GetPortLocation([in] fco, [out] sx, [out] sy, [out] ex, [out] ey)
<= GetLabelLocation([out] sx, [out] sy, [out] ex, [out] ey)
<= GetLocation([out] sx, [out] sy, [out] ex, [out] ey)
=> SetActive([in] isActive)

=> Draw([in] hDC)
 => SaveState()
 => Destroy()

IMgaDecorator Functions
HRESULT GetFeatures([out] feature_code *features)

This method tells GME which features the decorator supports. Available feature
codes are (can be combined using the bitwise-OR operator):

F_RESIZABLE : decorator supports resizable objects

F_MOUSEVENTS : decorator handles mouse events

F_HASLABEL : decorator draws labels for objects (outside of the object)

F_HASSTATE : decorator wants to save information in the MGA project

F_HASPORTS : decorator supports ports in objects

F_ANIMATION : decorator expects periodic calls of its draw method

HRESULT SetParam([in] BSTR name, [in] VARIANT value)

If there are some parameters specified for this decorator in the meta model, GME
will call this method for each parameter/value pair.

HRESULT GetParam([in] BSTR name, [out] VARIANT *value)

The decorator needs to be able to give back all the parameter/value pairs it got with
the SetParam(…) method.

HRESULT Initialize([in] IMgaProject* project, [in] IMgaMetaPart *meta, [in]
IMgaFCO *obj)

This is your constructor like function. Read all the relevant data from the project and
cache them for later use (it is a better approach than querying the MGA project in
your drawing method all the time). GME will instantiate a new decorator if its MGA
object changes.

Generic Modeling Environment User's Manual Decorators • 49

HRESULT GetPreferredSize([out] long* sizex, [out] long* sizey)

Your decorator can give GME a hint about the size of the object to be drawn. You
can compute this information based on the inner structure of the object or based on a
bitmap size, or even you can read these values from the registry of the object.
However, GME may not take this information into account when it calls your
SetLocation() method. All the size and location parameters are in logical units.

HRESULT GetPorts([out, retval] IMgaFCOs **portFCOs)

If your decorator supports ports, it should give back a collection of MGA objects that
are drawn as ports inside the decorator. GME uses this method along with successive
calls on GetPortLocation() to figure out where can it find port objects.

HRESULT SetLocation([in] long sx, [in] long sy, [in] long ex, [in] long ey)

You have to draw your object exactly to this position in this size. There is no
exemption to this. GME always calls this method before Draw().

HRESULT GetPortLocation([in] IMgaFCO *fco, [out] long *sx, [out] long *sy,
[out] long *ex, [out] long *ey)

See description of GetPorts(). Position coordinates are relative to the parent object.

HRESULT GetLabelLocation([out] long *sx, [out] long *sy, [out] long *ex,
[out] long *ey)

If you support label drawing, you have to specify the location of the textbox of your
label. This can reside outside of the object. GME will call SetLocation() before this
method.

HRESULT GetLocation([out] long *sx, [out] long *sy, [out] long *ex, [out]
long *ey)

Return the coordinates you got in SetLocation().

HRESULT SetActive([in] VARIANT_BOOL isActive)

GME calls this method with VARIANT_FALSE, if your object must be shown in
gray color. (Eg.: GME was switched into “set” mode.) By default the decorator
should paint its object with the active color.

HRESULT Draw([in] HDC hdc)

You have all the required information when this method is called. Because a
Windows HDC is supplied, the decorator has to be an in-process server. Saving and
restoring this DC in the beginning and at the end of your Draw() method is highly
recommended.

Generic Modeling Environment User's Manual Decorators • 50

HRESULT SaveState()

Because this is the only method your decorator is in read-write transaction mode, it
has to backup all the permanent data here.

HRESULT Destroy()

A destructor like function. Releasing here all your MGA COM pointers is a good
practice.

Using the Decorator skeleton
You can find a decorkit.zip file in the GME 6 distribution. It contains a skeleton
project for Visual C++ that implements a dumb decorator. Modifying the
DecoratorConfig.h file would be your first step when using the skeleton.

The following modifications have to be made:

• Give a new value to TYPELIB_UUID (a new ID can be generated by
the guidgen tool, found in Visual Studio)

• Give a new value to TYPELIB_NAME (at least replace the string
between the parenthesis)

• Give a new value to COCLASS_UUID (a new ID can be generated by
the guidgen tool, found in Visual Studio)

• Give a new value to COCLASS_NAME (at least replace the string
between the parenthesis)

• Give a new value to COCLASS_PROGID (at least replace the last tag
of the string)

• Give a new value to DECORATOR_NAME

• Set GME_INTERFACES_BASE to point to the interfaces directory of
your GME
installation

You have to make these modifications only once. When you are upgrading your
decorator SDK, create a backup of your DecoratorConfig.h, and restore it after the
upgrade.

Assigning decorators to objects
You can assign decorators to objects in your meta model or even later in your
model(s). In the MetaGME environment there is a Decorator attribute for each non-
connection FCO where you can specify a ProgID along with optional
parameter/value pairs for a class. The format of this string is as follows:

Generic Modeling Environment User's Manual Decorators • 51

ProgID param1=value1, param2=value2, …

e.g.:

MGA.Decorator.MetaDecorator showattributes=false, showabstract=true

In your models all the non-connection FCOs have a preference setting called
Decorator. The format of this string is identical to the one in the meta model.

Generic Modeling Environment User's Manual Decorators • 52

Metamodeling Environment

Introduction
The metamodeling environment has been extended with a new decorator component
in version 1.2 or later. It displays UML classes including their stereotypes and
attributes. Proxies also show this information It resizes UML classes accordingly.
Note that the figures below show the old appearance of metamodels.

GME 6 adds a OCL syntax checker add-on to the metamodeling environment. Every
time a constraint expression attribute is changed, this add-on is activated. Note that
the target paradigm information is not available to this tool, therefore, it cannot
check arguments and parameters, such as kindname. These can only be checked at
constraint evaluation time in your target environment.

Step by step guide to basic metamodeling
The following sections describe the concepts that are used to model the output
Paradigm.

Paradigm

The Paradigm is represented as the model that contains the UML class diagram. The
name of the Paradigm model is the name of the paradigm produced by the
interpreter. The attributes of the Paradigm are Author Information and Version
Information.

Folder

A Folder is represented as a UML class of stereotype «folder». Folders may own
other Folders, FCO’s, and Constraints. Once a Folder contains another container, it
by default contains all FCO’s, Folders, and Constraints that are in that container.
Folders are visualized only in the model browser window of GME 6, and therefore
do not use aspects. A Folder has the Displayed Name, and In Root Folder
attributes.

Generic Modeling Environment User's Manual Metamodeling Environment • 53

How to specify containment for a Folder

Folder containment applies to Folders and Models that may be contained in a Folder.

In the figure below, the UML diagram outlines the containment scheme of a
paradigm for a sports season. To specify containment for a Folder, follow these
steps.

Create the Folder and item it contains (through insertion, or dragging from the parts
menu)

Connect the item to the Folder

Now, the Folder contains the item.

Example of a Folder containment

FCO
This is a class that is mandatorily abstract. The purpose of this class is to enable
objects that are inherently different (Atom, Reference, Set, etc.) to be able to inherit
from a common base class.

To avoid confusion with the generalization of modeling concepts (Model, Atom, Set,
Connection, Reference) called collectively an “FCO”, and this kind of object in the
metamodeling environment which is called an “FCO”, the metamodeling concept
(that would actually be dragged into a Paradigm model) will be shown in regular
font, while the generalization of types will be in italics as FCO. An FCO has the Is
Abstract and General Preferences attributes. All FCO-s will also have these
attributes.

How to create an FCO
An FCO (like all FCO-s) is created by dragging in the atom corresponding to its
stereotype, or inserting the atom through the menu.

Generic Modeling Environment User's Manual Metamodeling Environment • 54

How to specify an Attribute for an FCO
Create and configure the Attribute and the FCO.

Connect the Attribute to the FCO

Now, the Attribute belongs to the FCO.

Atom
This class represents an Atom. The Atom is the simplest kind of object in one sense,
because it cannot contain any other parts; but it is complex to define because of the
many different contributions it can make to a Model, Reference, etc.

An Atom has the Icon Name, Port Icon Name, and Name Position attributes.

How to set that an Atom is a Port
Configure the Atom to be a member of a Model

Click on the attributes of the Containment association between the Atom and the
Model

Assert the Object Is A Port attribute.

Reference
To represent a Reference class, two things must be specified: the FCO to which this
Reference refers, and the Model to which the Reference belongs. A Reference has
the Icon Name and Name Position attributes.

How to specify containment of a Reference in a Model
Connect the Reference to the Model

Resolve the prompt for connection type as “Containment”.

How to specify the FCO to which a Reference refers
Connect the Reference to the FCO.

If the FCO is of type Model, an additional prompt is displayed (exactly the same as
when giving ownership to the Model as in the previous step). This time, choose the
“Refer” type of connection. If the FCO is not of type Model, then no additional
input is necessary.

When specifying the roles to which a Reference may refer (that is, if the referred
FCO may play more than one kind of role in a particular Model), the current solution
is that it may refer to all roles of that particular kind. However, in the future, this list
may be modified during paradigm construction through the help of an add-on.

Generic Modeling Environment User's Manual Metamodeling Environment • 55

Example implementation of a Reference.

Connection
In order for a Connection to be legal within a Model, it must be contained through
aggregation in that Model. The Connection is another highly configurable concept.
The attributes of a Connection include Name Position, 1st destination label, 2nd
destination label, 1st source label, 2nd source label, Color, Line type, Line end, and
Line Start.

How to specify a connection between two Atoms
In addition to Atoms, a Reference to an Atom may also be used as an endpoint of the
Connection. Note that Connection is also usable as an endpoint, but there is
currently no visualization for this concept.

Drag in a Connector Atom (the name of the Connector was deleted in the example
figure)

Connect the source Atom to the Connector

Connect the Connector to the destination Atom

Connect the Connector to the Connection. Resolve the Connection type to
“AssociationClass”

The rolenames of the connections (“src” and “dst”) denote which of the Atoms may
participate as the source or destination of the connection. There may be only one
source and one destination connection to the Connector Atom.

Inheritance is a useful method to increase the number of sources and destinations,
since all child classes will also be sources and destinations.

Currently, all possible FCO source/destination combinations will be used in the
production of the metamodel. However, in future revisions of the metamodeling
environment, the list of allowable connections may be modified at model building
time (to eliminate certain possibilities from ever occurring).

Generic Modeling Environment User's Manual Metamodeling Environment • 56

Example of a Connection

Set
The Set is a more general case of the Reference. Sets have the Icon name, and
Name Position attributes.

Figure 4 shows an example implementation of a Set. The members of the Set are
“owned” by the Set through the “SetMembership” connection kind (when connecting
the Reference to the Set, the user will be prompted to choose between the
“SetMembership” and “ReferTo” connection kinds). Some underlying assumptions
exist here, such as all members of the Set must be members of the Model to which
this set belongs.

Example implementation of a Set

How to specify what FCO-s a Set “Owns”
Connect the FCO to the Set Atom. In the event of an ambiguity, resolve it with the
SetMembership connection type.

Generic Modeling Environment User's Manual Metamodeling Environment • 57

Make sure to aggregate the Set to the Model in which it will reside.

Model
The Model may contain (through the “Containment” connection type) any other
FCO, and it associates a role name to each FCO it contains. The Model has the
Name Position and In Root Folder attributes.

How to contain a Model (Model-1) in a Model (Model-0)
Connect Model-1 to Model-0

Note that it is applicable to have a Model contain itself (the previous case where
Model-1 == Model-0).

How to contain an Atom in a Model
In the event that an FCO is used as a superclass for the Model, then FCO may
replace Model in the following sequence. Atom may be replaced by Set, Reference,
or Connection.

Create and configure the Atom and the Model

Connect the Atom to the Model

Attributes
Attributes are represented by UML classes in the GME metamodeling environment.
There are three different kinds of Attributes: Enumerated, Field, and Boolean. Once
any of these Attributes are created, they are aggregated to FCO-s in the Attributes
Aspect. The order of attributes an FCO will have is determined by the relative
vertical location of the UML classes representing the attributes.

Inheritance
Inheritance is standard style for UML. Any FCO may inherit from an FCO kind of
class, but an FCO may inherit only from other FCO’s. Kinds may inherit only from
each other (e.g. Model may not inherit from Atom). When the class is declared as
abstract, then it is used during generation, but no output FCO is generated. No class
of kind FCO is ever generated.

When multiple-inheritance is encountered, it will always be treated as if it were
virtual inheritance. For example, the classic diamond hierarchy will result in only
one grandparent class being created, rather than duplicate classes for each parent.

How to Specify Inheritance
It is assumed that Child and Parent are of the same kind (e.g. Atom, Model). FCO is
used in this example, for brevity, but note that any FCO may participate in the Child
role, if the Parent is of kind FCO. Else, they must match.

Connect the Parent FCO to the Inheritance Atom. This creates a superclass.

Connect the Inheritance atom to the Child FCO. This creates the child class.

Generic Modeling Environment User's Manual Metamodeling Environment • 58

Aspect
This set defines the visualization that the Models in the destination paradigm will
use. Models may contain Aspects through the “HasAspect” connection kind. This is
visualized using the traditional UML composition relation using a filled diamond.
FCOs that need to be shown in the an aspect must be made members of the given
Aspect set.

GME 6 supports aspect mapping providing precise control over what aspect of a
model is shown in an aspect of the containing model. This is advanced rarely-used
usually feature is typically applied in case a container and a contained models have
disjoint aspect sets. Specifying aspect mapping would be to cumbersome in a UML-
like graphical language. The metamodeling interpreter allows specifying this
information in a dialog box (described in detail later).

Composing Metamodels
The composable metamodeling environment released with GME v1.1, supports
metamodel composition. First, it supports multiple paradigm sheets. Unlike most
UML editors, where boxes representing classes are tied together by name, GME 6
uses references. They are called proxies. Any UML class atom can have multiple
proxies referring to it. These references are visualized by a curved arrow inside the
regular UML class icon. The atom and all its proxies represent the same UML class.

Operators
In addition to improving the usability of the environment and the readability of the
metamodels, the primary motivation behind composable metamodeling is to support
the reuse of existing metamodels and, eventually, to create extensive metamodel
libraries. However, this mandates that existing metamodels remain intact in the
composition, so that changes can propagate to the metamodels where they are used.

The above requirement and limitations of UML made it necessary to develop three
operators for use in combining metamodels together: an equivalence operator, an
implementation inheritance operator, and an interface inheritance operator.

Equivalence operator
The equivalence operator is used to represent the (full) union between two UML
class objects. The two classes cease to be two separate classes, but form a single
class instead. Thus, the union includes all attributes and associations, including
generalization, specialization, and containment, of each individual class. Equivalence
can be thought of as defining the “join points” or “composition points” of two or
more source metamodels.

Implementation inheritance operator
The semantics of UML specialization (i.e. inheritance) are straightforward:
specialized (i.e. child) classes contain all the attributes of the general (parent) class,
and can participate in any association the parent can participate in. However, during
metamodel composition, there are cases where finer-grained control over the
inheritance operation is necessary. Therefore, we have introduced two types of
inheritance operations between class objects—implementation inheritance and
interface inheritance.

Generic Modeling Environment User's Manual Metamodeling Environment • 59

In implementation inheritance, the subclass inherits all of the base class’ attributes,
but only those containment associations where the base class functions as the
container. No other associations are inherited. Implementation inheritance is
represented graphically by a UML inheritance icon containing a solid black dot.

This can be seen in the left hand side diagram in the figure below, where
implementation inheritance is used to derive class X1 from class B1. In this case, X1
the association allowing objects of type C1 to be contained in objects of type B1. In
other words, X1-type objects can contain C1-type objects. Because B1-type objects
can contain other B1-type objects, X1-type objects can contain objects of type B1
but not of type X1. Note that D1-type objects can contain objects of type B1 but not
objects of type X1.

Interface inheritance operator
The right side of the figure shows interface inheritance between B2 and X2 (the
unfilled circle inside the inheritance icon denotes interface inheritance). Interface
inheritance allows no attribute inheritance but does allow full association inheritance,
with one exception: containment associations where the base class functions as the
container are not inherited. Therefore, in this example, X2-type objects can be
contained in objects of type D2 and B2, but no objects can be contained in X2-type
objects, not even other X2-type objects.

The union of implementation inheritance and interface inheritance is the normal
UML inheritance. It should also be noted that these operators could have been
implemented using UML stereotypes. However, interface and implementation
inheritance are semantically much closer to regular inheritance than to associations.
Therefore, the use of association with stereotypes would be misleading.

Implementation and interface inheritance operators

Aspect equivalence
Since classes representing Aspects show up only in the Visualization aspect, another
operator is used to express the equivalence of aspects, called the SameAspect
operator. While aspects can have proxies as well, they are not sets any more; they are
references. Hence, they cannot be used to add additional objects to the aspect. In this
case, a new aspect needs to be created. New members can be added to it, since it is a
set. Using the SameAspect operator and typically a proxy of another aspect, the
equivalence of the two aspects can be expressed.

Note that having two aspects with the same name without explicitly expressing the
equivalence of them will result in two different aspect in the target modeling
paradigm.

The name of the final aspect is determined by the following rules. If an equivalence
is expressed between a proxy and a UML class, the name of the class is used. If one

Generic Modeling Environment User's Manual Metamodeling Environment • 60

of them is abstract and the other is not, the name of the non-abstract class (or proxy)
is used. If both aspects are proxies (or classes), then the name of the SameAspect
operator is used.

Currently, the order of aspects in the target paradigm is determined by the relative
vertical position of the aspect set icons in the metamodels.

Folder equivalence
The equivalence of folders can be expressed using the SameFolder operator.

Generating the Target Modeling Paradigm
Once the Paradigm Model is complete, then comes time to interpret the Model.
Interpretation can be initiated from any model. After extensive consistency checking,
the interpreter displays a dialog box where aspect mapping information can be
specified.

Aspect Mapping
The dialog box contains as many tabs as there are distinct aspects in the target
environment. Under each tab a listbox displays all possible model-role combinations
in the first column. The second column presents the available aspects for the given
model and model reference (i.e. in the specified role) in a combo box. The default
selection is the aspect with the same name as the container models aspect. For all
other FCOs (atoms, sets, connections) this files shows N/A.

The third column is used to specify whether the given the aspect is primary or not for
the given FCO (i.e. in the specified role). In a primary aspect, the given FCO can be
added or deleted. In a secondary aspect, it only shows up, but cannot be added or
deleted.

Note that all the information provided by the user through this dialog box is
persistent. It is stored in the metamodel, in the registry of the corresponding objects.
A subsequent invocation of the interpreter will show the dialog box with the
information specified by the user the previous time.

Attribute Guide
Each attribute of any given FCO in the Metamodeling environment has a specific
meaning for the output paradigm. This section describes each attribute, and lists the
FCO(s) in which the attribute resides. Attributes are listed by the text prompted on
the screen for their entry. The section also gives what special instructions (if any)
are necessary for filling out the attribute.

For fields, if the default value of the field is “”, then no default value is specified in
the description. All other attributes list the default value.

1st source label

String value that gives the name of the Attribute class to be displayed there. The
Attribute should also belong (through aggregation) to the Connection. Then, the
value of that Attribute will be displayed in the first position at the end of the source
of the connection.

Generic Modeling Environment User's Manual Metamodeling Environment • 61

 Contained in – Connection

2nd source label

String value that gives the name of the Attribute class to be displayed there. The
Attribute should also belong (through aggregation) to the Connection. Then, the
value of that Attribute will be displayed in the second position at the end of the
source of the connection.

 Contained in – Connection

1st destination label

String value that gives the name of the Attribute class to be displayed there. The
Attribute should also belong (through aggregation) to the Connection. Then, the
value of that Attribute will be displayed in the first position at the end of the
destination of the connection.

 Contained in – Connection

2nd destination label

String value that gives the name of the Attribute class to be displayed there. The
Attribute should also belong (through aggregation) to the Connection. Then, the
value of that Attribute will be displayed in the second position at the end of the
destination of the connection.

 Contained in – Connection

Abstract

Boolean checkbox that determines whether or not the FCO in question will actually
be generated in the output paradigm. If the checkbox is checked, then no object will
be created, but all properties of the FCO will be passed down to its inherited children
(if any).

 Default value – Unchecked

 Contained in – FCO, Atom, Model, Set, Connection, Reference

Author information

A text field translated into a comment within the paradigm output file.

Contained in – Paradigm

Cardinality

Text field that gives the cardinality rules of containment for an aggregation.

 Default value – 0..*

 Contained in – Containment, FolderContainment

Color

String value that gives the default color value of the connection (specified in hex, ex:
0xFF0000).

 Default value – 0x000000 (black)

 Contained in – Connection

Generic Modeling Environment User's Manual Metamodeling Environment • 62

Composition role

Text field that gives the rolename that the FCO will have within the Model.

 Contained in – Containment

Constraint Equation

Multiline text field that gives the equation for the constraint.

 Contained in – Constraint

Context

Text field that specifies the context of a Constraint Function.

 Contained in – ConstraintFunc

Data type

Enumeration that gives the default data type of a FieldAttr. The possible values are
String, Integer, and Double.

 Default value – String

 Contained in – FieldAttr

Decorator

Test field that specifies the decorator component to be used to display the given
object in the target environment. Example: MGA.Decorator.MetaDecorator

 Contained in – Model, Atom, Reference, Set

Default = ‘True’

A boolean checkbox that describes the default value of a BooleanAttr.

 Default value – Unchecked

 Contained in – BooleanAttr

Default parameters

Text field that gives the default parameters of the constraint.

 Contained in – Constraint

Default menu item

Text field that gives the displayed name of the menu item in the Menu items
attribute to be used as the default value of the menu.

 Contained in – EnumAttr

Description

Text field that is displayed when the constraint is violated.

 Contained in – Constraint

Generic Modeling Environment User's Manual Metamodeling Environment • 63

Displayed name

String value that gives the displayed name of a Folder or Aspect. This will be the
value that is shown in the model browser, or aspect tab (respectively). A blank value
will result in the displayed name being equal to the name of the class.

 Contained in – Folder, Aspect

Field default

Text field that gives the default value of the FieldAttr.

 Contained in – FieldAttr

General preferences

Text field (multiple lines) that allows a user to enter data to be transferred directly
into the XML file. This is a highly specific text area, and is normally not used. The
occasions for using this area is to configure portions of the paradigm that the
Metamodeling environment has not yet been developed to configure.

 Contained in – FCO, Atom, Model, Set, Connection, Reference

Global scope

A boolean checkbox that refers to the definition scope of the attribute. In most cases,
it is sufficient to leave this attribute in its default state (true). The reason for giving
the option of scope is to be able to include attributes with the same names in
different FCO-s, and have those attributes be different. In this case, it is necessary to
include local scoping (i.e. remove the global scope), or the paradigm file will be
ambiguous.

 Default value – Checked

 Contained in – EnumAttr, BooleanAttr, FieldAttr

Icon

Text field that gives the name of a file to be displayed as the icon for this object.

 Contained in – Atom, Set, Reference, Model

In root folder

Boolean checkbox that determines whether or not this object can belong in the root
folder. Note that if an object cannot belong to the root folder, then it must belong to
a Folder or Model (somewhere in its containment hierarchy) that can belong to the
root folder.

 Default value – Checked

 Contained in – Folder, Model, Atom, Set, Reference

Line end

Enumeration of the possible end types of a line. Possible types are Butt (no special
end), Arrow, and Diamond.

 Default value – Butt

 Contained in – Connection

Generic Modeling Environment User's Manual Metamodeling Environment • 64

Line start

Enumeration of the possible start types of a line. Possible types are Butt (no special
end), Arrow, and Diamond.

 Default value – Butt

 Contained in – Connection

Line type

Enumeration of the possible types of a line. Possible types are Solid, and Dash.

 Default value – Solid

 Contained in – Connection

Number of lines

Integer field that gives the number of lines to display for this FieldAttr.

 Default value – 1

 Contained in – FieldAttr

Menu items

A text field that lists the items in an EnumAttr. There are two modes for this text
field (which can also be called a text box, because it has the ability for multiple
lines).

In basic mode, the field items are separated by carriage returns, in the order in which
they should be listed in the menu. In this case, the text used as the menu will be the
same as value of the menu.

In the expanded mode, it is possible to list the definite values to be used for the menu
elements. This is done by separating the displayed value from the actual value with
a comma (,).

Example:

 Sample enumerated attribute specification

Note that the displayed and actual value need not be of the same basic type
(character, integer, float, etc.) because it will all be converted to text.

 Contained in – EnumAttr

Generic Modeling Environment User's Manual Metamodeling Environment • 65

Name position

Enumeration that lists the nine places that the name of an FCO can be displayed.

 Default value – South

 Contained in – Atom, Set, Reference, Model

Object is a port

Boolean checkbox that determines whether or not the FCO will be viewable as a port
within the model.

 Default value – Unchecked

 Contained in – Containment

On…

The Constraint has many attributes which are similar, except for the type of event to
which they refer. They are all boolean checkboxes that give the constraint manager
the authority to check this constraint when certain events occur (e.g. Model
creation/deletion, connecting two objects). For more information on the semantics of
these events, please refer to the constraint manager documentation.

• On close model

• On new child

• On delete

• On disconnect

• On connect

• On derive

• On change property

• On change assoc.

• On exclude from set

• On include in set

• On move

• On create

• On change attribute

• On lost child

• On refer

• On unrefer

Default value – Unchecked

Contained in – Constraint

Port icon

Text field that gives the name of a file to be displayed as the port icon for this object.
If no entry is made for this field, but the object is a port, then the normal icon will be
scaled to port size.

Generic Modeling Environment User's Manual Metamodeling Environment • 66

 Contained in – Atom, Set, Reference, Model

Priority (1=High)

Enumeration of the possible levels of priority of this constraint. For more
information on constraint priority, refer to the constraint manager.

 Contained in – Constraint

Prompt

A text field translated into the prompt of an attribute. It is in exact WYSIWYG
format (i.e. no ‘:’ or ‘-‘ is appended to the end).

 Contained in – EnumAttr, BooleanAttr, FieldAttr

Return type

Text field that specifies the type a Constraint Function.returns.

 Contained in – ConstraintFunc

Rolename

Text field that gives the rolename that the FCO will have in the Connection. There
are two different possible default values, ‘src’ and ‘dst’, depending upon whether the
connection was made from the Connector to the FCO, or the FCO to the Connector.

 Default value – src or dst

 Contained in – SourceToConnector, ConnectorToSource

Stereotype

Enumeration field that specifies how a Constraint Function can be called.

• attribute

• method

Default value – method

 Contained in – ConstraintFunc

Type displayed

A boolean checkbox that decides whether the name of Type or Subtype of an
Instance has to be displayed or not.

Default value – Unchecked

 Contained in – FCO, Atom, Model, Set

Typeinfo displayed

A boolean checkbox that decides whether ‘T’, ‘S’ or ‘I’ letter is displayed according
to that the concrete model is Type, Subtype or Instance. A model does not have any
sign if it is not in type inheritance.

Default value – Checked

 Contained in – Model

Generic Modeling Environment User's Manual Metamodeling Environment • 67

Version information

A text field translated into a comment within the paradigm output file. The user is
responsible for updating this field.

Contained in – Paradigm

Viewable

A boolean checkbox that decides whether or not to display the attribute in the
paradigm. If the state is unchecked, then the attribute will be defined in the
metamodel, but not viewable in any Aspect (regardless of the properties of the FCO.
This is useful if you want to store attributes outside the user’s knowledge.

 Default value – Checked

 Contained in – EnumAttr, BooleanAttr, FieldAttr

Semantics Guide to Metamodeling
The following table displays the representation of the concepts of GME 6, and how
they translate semantically into core MGA concepts.

Generic Modeling Environment User's Manual Metamodeling Environment • 68

Stereotype/name Context Semantics [& Implications]

First Class Objects (FCO’s)
«model» A class The class is an MGA model
«atom» A class The class is an MGA atom
«connection» A class The class is an MGA connection (must be used as an

Association Class
«reference» A class The class is an MGA reference
«set» A class The class is an MGA set
«FCO» A class (abstract only) The class is a base type of another FCO

Associations
Containment An association (with diamond) between

a «model» and an FCO
The «model» contains the specified FCO as a part.

AssociationClass An association between a «connection»
(class) and an Association Connector
(models the connection join).

The «connection» contains all of the roles that the
Association Connection has.

ReferTo A directed association between a
«reference» and a «model», «atom», or
«reference»

The instances of the «reference» class will refer to
the instances of the «model», «atom», or «reference»
class.

Association Classes
«connection» An association between a src/dst pair

(or an n-ary connection, in the general
sense) that is attributed by a
«connection» class

The «connection» class represents the src/dst pair(s)
as an MGA connection. [note: the «connection» is an
FCO]

Containment
FolderContainment An association (with diamond) between

a «folder» and a «folder»
The «folder» contains 0..n of the associated «folder»
as a legal sub-folder

FolderContainment An association (with diamond) between
a «folder» and an FCO

The «folder» contains 0..n of the associated FCO as a
legal root-object

Containment An association (with diamond) between
a «model» and an FCO

The «model» contains the associated FCO which
plays a specified role

SetMembership An association (with diamond) between
a «set» and an FCO

The «set» may contain the associated FCO.

HasAspect An association between a «model» and
an «aspect»

The «model» contains the specified «aspect».

Cardinality
(none) An integer attribute for each end of the

association
This end of the association has the cardinality
specified [unspecified cardinality is assumed to be 1]

Various
«aspect» A class The class denotes an MGA aspect
«folder» A class The class denotes an MGA folder
(none) The model represents a Project An MGA Project

Inheritance
(none) UML Inheritance The class inherits from a superclass. An attribute of

the destination is the rolename to be used for the
child class.

Groups of parts
Connector Atom, reference, (port), (reference port) The part may play a role in a connection
FCO Model, atom, reference, connection, set The part is a first class object
Referenceable Model, atom, reference The part may be referenced

Generic Modeling Environment User's Manual Metamodeling Environment • 69

High-Level Component Interface

Introduction to the Component Interface

The process of accessing GME 6 models and generating useful information, e.g.
configuration files for COTS software, database schema, input for a discrete-event
simulator, or even source code, is called model interpretation. GME provides two
interfaces to support model interpretation. The first one is a COM interface that lets
the user write these components in any language that supports COM, e.g. C++,
Visual Basic or Java. The COM interface provides the means to access and modify
the models, their attributes and connectivity. In short, the user can do everything that
can be done using the GUI of the GME. There are two higher-level C++ interfaces
that take care of a lot of lower level issues and makes component writing much
easier. These high-level C++ component interfaces are the focus of this chapter. The
first section discusses the first release of Builder Object Network, the second
elaborates the more sophisticated version of BON with the Meta Object Network.

Interpreters are typical, but not the only components that can be created using this
technology. The other types are plug-ins, i.e. components that provide some useful
additional functionality to ease working in GME. These components are very similar
to interpreters, though they are paradigm-independent. For example, a plug-in can
be developed to search or locate objects based on some user-defined criteria, like the
value of an attribute.

The third types of these components are add-ons, i.e. components that can react to
GME-events sent by the COM Mga-Layer. These components are very useful to
make GME a run-time executional environment or to write more sophisticated
paradigm dependent or independent extensions.

Builder Object Network version 1.0

What Does the BON Do?
The component interface is implemented on the top of the COM interface. When the
user initiates model interpretation, the component interface creates the so-called
Builder Object Network (BON). The builder object network mirrors the structure of
the models: each model, atom, reference, connection, etc. has a corresponding
builder object. This way the interface shields the user from the lower level details of
the COM interface and provides support for easy traversal of the models along either
the containment hierarchy, the connections, or the references. The builder classes

Generic Modeling Environment User's Manual High-Level Component Interface • 70

provide general-purpose functionality. The builder objects are instances of these
predefined paradigm independent classes. For simple paradigm-specific or any kind
of paradigm independent components, they are all the user needs. For more
complicated components, the builder classes can be extended with inheritance. By
using a pair of supplied macros, the user can have the component interface
instantiate these paradigm-specific classes instead of the built-in ones. The builder
object network will have the functionality provided by the general-purpose interface
extended by the functionality the component writer needs.

Component Interface Entry Point
The Builder.h file in component source package defines the high-level C++
component interface. The entry point of the component is defined in the
Component.h in the appropriate subdirectory of the components directory. Here is
the file at the start of the component writing process:

#ifndef GME_INTERPRETER_H

#define GME_INTERPRETER_H

#include "Builder.h"

#define NEW_BON_INVOKE

//#define DEPRECATED_BON_INVOKE_IMPLEMENTED

class CComponent {

public:

 CComponent() : focusfolder(NULL) { ; }

 CBuilderFolder *focusfolder;

 CBuilderFolderList selectedfolders;

 void InvokeEx(CBuilder &builder,CBuilderObject *focus,

 CBuilderObjectList &selected, long param);

// void Invoke(CBuilder &builder,

 CBuilderObjectList &selected, long param);

};

#endif // whole file

Before GME version 1.2 this used to be simpler, but not as powerful. The Invoke
function of the CComponent class used to be the entry point of the component. When
the user initiates interpretation, first the builder object network is created then the
above function is called. The first two parameters provide two ways of traversing the
builder object network. The user can access the list of folders through the CBuilder
instance. Each folder provides a list of builder objects corresponding to the root
models and subfolders. Any builder can then be access through recursive traversal of
the children of model builders.

The CBuilderModelList contains the builders corresponding to the models selected
at the time interpretation was started. If the component was started through the main
window (either through the toolbar or the File menu) then the list contains one model
builder, the one corresponding to the active window. If the interpretation was started
through a context menu (i.e. right click) then the list contains items for all the
selected objects in the given window. If the interpretation was started through the

Generic Modeling Environment User's Manual High-Level Component Interface • 71

context menu of the Model Browser, then the list contains the builders for the
selected models in the browser.

Using this list parameter of the Invoke function makes it possible to start the
interpretation at models the user selects. The long parameter is unused at this point.

In version 1.2, Invoke has been replaced by InvokeEx, which clearly separates the
focus object from the selected objects. (Depending on the invocation method both of
these parameters may be empty.) To maintain compatibility with existing
components, the following preprocessor constants have been designated for inclusion
in the Component.h file:

- NEW_BON_INVOKE: if #defined in Component.h, indicates that the new BON is
being used. If it is not defined (e.g. if the Component.h from an old BON is being
used) the framework works in compatibility mode.

- DEPRECATED_BON_INVOKE_IMPLEMENTED: In most cases, only the
CComponent::InvokeEx needs to be implemented by the component programmer,
and the ImgaComponent::Invoke() method of the original COM interface also results
in a call to InvokeEx. If, however the user prefers to leave the existing
Component::Invoke() method to be called in this case, the #define of this constant
enables this mode. InvokeEx() must be implemented anyway (as
NEW_BON_INVOKE is still defined).

- IMPLEMENT_OLD_INTERFACE_ONLY: this constant can be included in old
Component.h files only to fully disable support for the IMgaComponentEx COM
interface (GME invokes to the old interface if the InvokeEx is not supported). Using
this constant is generally not recommended.

If none of the above constants are defined, the BON framework interface is
compatible with the old Ccomponent classes. Censequently, older BON code
(Component.h and Component.cpp) can replace the corresponding skeleton/example
files provided in the new BON. When using such a component, however, a warning
is message is displayed to remind users to upgrade the component code to one fully
compliant with the new BON. Although it is strongly recommended to update the
component code (i.e converting CComponent::Invoke to CComponent::InvokeEx(),
this warning can also be supressed by disabling the new COM component interface
through the inclusion of the #define IMPLEMENT_OLD_INTERFACE_ONLY
definition into the old Component.h file.

Plung-Ins are paradigm-independent components. The example Noname plug-in
displays a message. The implementation is in the component.cpp file shown below:

#include "stdafx.h"

#include "Component.h"

void CComponent:: InvokeEx(CBuilder &builder,CBuilderObject *focus,

 CBuilderObjectList &selected, long param)

{

 AfxMessageBox("Plug-In Sample");

}

The component.h and component.cpp files are the ones that the component writer
needs to expand to implement the desired functionality.

Generic Modeling Environment User's Manual High-Level Component Interface • 72

Component Interface

Class diagram of Builder Object Network

The simple class structure of the component interface is shown below. Note that each
class is a derivative of the standard MFC CObject class.

As noted before, the single instance of the CBuilder class provides a top level entry
point into the builder object network. It provides access to the model folders and
supplies the name of the current project. The public interface of the CBuilder class is
shown below.

class CBuilder : public CObject {

public:

 CBuilderFolder *GetRootFolder() const;

 const CBuilderFolderList *GetFolders() const;

 CBuilderFolder *GetFolder(CString &name) const;

 CString GetProjectName() const;

};

The CBuilderFolder class provides access to the root models of the given folder. It
can also be used to create new root models.

class CBuilderFolder : public CObject {

public:

 const CString& GetName() const;

 const CBuilderModelList *GetRootModels() const;

 const CBuilderFolderList *GetSubFolders() const

 CBuilderModel *GetRootModel(CString &name) const;

 CBuilderModel *CreateNewModel(CString kindName);

};

The CBuilderObject is the base class for several other classes. It provides a set of
common functionality for models, atoms, references, sets and connections. Some of
the functions need some explanation.

The GetAttribute() functions return true when their successfully retrieved the value
of attribute whose name was supplied in the name argument. If the type of the val
argument does not match the attribute or the wrong name was provided, the function
return false. For field and page attributes, the type matches that of specified in the
meta, for menus, it is a CString and for toggle switches, it is a bool.

The GetxxxAttributeNames functions return the list of names of attributes the given
object has. This helps writing paradigm-independent components (plug-ins).

Generic Modeling Environment User's Manual High-Level Component Interface • 73

The GetReferencedBy function returns the list of references that refer to the given
object (renamed in v1.2 from GetReferences).

The GetInConnections (GetOutConnection) functions return the list of incoming
(outgoing) connections from the given object. The string argument specifies the
name of the connection kind as specified by the modeling paradigm. The
GetInConnectedObjects (GetOutConnectedObjects) functions return a list of objects
instead. The GetDirectInConnections (GetDirectOutConnections) build a tree. The
root of the tree is the given object, the edges of the tree are the given kind of
connections. The function returns the leaf nodes. Basically these functions find paths
to (from) the given object without the component writer having to write the traversal
code.

The TraverseChildren virtual functions provide a ways to traverse the builder object
network along the containment hierarchy. The implementation provided does not do
anything, the component writer can override it to implement the necessary
functionality. As we'll see later, the CBuilderModel class does override this function.
It enumerates all of its children and calls their Traverse method.

Generic Modeling Environment User's Manual High-Level Component Interface • 74

class CBuilderObject : public CObject {

 const CString& GetName();

 const bool SetName(CString newname);

 void GetNamePath(CString &namePath) const;

 const CString& GetKindName() const;

 const CString& GetPartName() const;

 const CBuilderModel *GetParent() const;

 CBuilderFolder* GetFolder() const;

 bool GetLocation(CString &aspectName,CRect &loc);

 bool SetLocation(CString aspectName,CPoint loc);

 void DisplayError(CString &msg) const;

 void DisplayError(char *msg) const;

 void DisplayWarning(CString &msg) const;

 void DisplayWarning(char *msg) const;

 bool GetAttribute(CString &name,CString &val) const;

 bool GetAttribute(char *name,CString &val) const;

 bool GetAttribute(CString &name,int &val) const;

 bool GetAttribute(char *name,int &val) const;

 bool GetAttribute(CString &name,bool &val) const;

 bool GetAttribute(char *name,bool &val) const;

 bool SetAttribute(CString &name, CString &val);

 bool SetAttribute(CString &name, int val);

 bool SetAttribute(CString &name, bool val);

 void GetStrAttributeNames(CStringList &list) const;

 void GetIntAttributeNames(CStringList &list) const;

 void GetBoolAttributeNames(CStringList &list) const;

 void GetReferencedBy(CBuilderObjectList &list) const;

 const CBuilderConnectionList *GetInConnections(CString &name) const;

 const CBuilderConnectionList *GetInConnections(char *name) const;

 const CBuilderConnectionList *GetOutConnections(CString name)const;

 const CBuilderConnectionList *GetOutConnections(char *name) const;

Generic Modeling Environment User's Manual High-Level Component Interface • 75

 bool GetInConnectedObjects(const CString &name,

 CBuilderObjectList &list);

 bool GetInConnectedObjects(const char *name, CBuilderObjectList &list);

 bool GetOutConnectedObjects(const CString &name,

 BuilderObjectList &list);

 bool GetOutConnectedObjects(const char *name,

 CBuilderObjectList &list);

 bool GetDirectInConnections(CString &name, CBuilderObjectList &list);

 bool GetDirectInConnections(char *name, CBuilderObjectList &list);

 bool GetDirectOutConnections(CString &name, CBuilderObjectList &list);

 bool GetDirectOutConnections(char *name, CBuilderObjectList &list);

 virtual void TraverseChildren(void *pointer = 0);

};

The CBuilderModel class is the most important class in the component interface,
simply because models are the central objects in the GME. They contain other
objects, connections, sets, they have aspects etc. The GetChildren function returns a
list of all children, i.e. all objects the model contains (models, atoms, sets, references
and connections). The GetModels method returns the list of contained models. If a
role name is supplied then only the specified part list is returned. The GetAtoms,
GetAtomReferences and GetModelReferences, GetSets() functions work the same
way except that a part name must be supplied to them. The GetConnections method
return the list of the kind of connections that was requested. These are the
connections that are visible inside the given model.

The GetAspectNames function return the list of names of aspects the current model
has. This helps in writing paradigm-independent components.

Children can be created with the appropriate creation functions. Similarly,
connections can be constructed by specifying their kind and the source and
destination objects. Please, see the description of the CBuilderConnection class for a
detailed description of connections.

The TraverseModels function is similar to the TraverseChildren but it only traverses
models.

Generic Modeling Environment User's Manual High-Level Component Interface • 76

class CBuilderModel : public CBuilderObject {

public:

 const CBuilderObjectList *GetChildren() const;

 const CBuilderModelList *GetModels() const;

 const CBuilderModelList *GetModels(CString partName) const;

 const CBuilderAtomList *GetAtoms(CString partName) const;

 const CBuilderModelReferenceList *GetModelReferences(CString

 refPartName) const;

 const CBuilderAtomReferenceList *GetAtomReferences(CString refPartName)

 const;

 const CBuilderConnectionList *GetConnections(CString name) const;

 const CBuilderSetList *GetSets(CString name) const;

 void GetAspectNames(CStringList &list);

Generic Modeling Environment User's Manual High-Level Component Interface • 77

 CBuilderModel *CreateNewModel(CString partName);

 CBuilderAtom *CreateNewAtom(CString partName);

 CBuilderModelReference *CreateNewModelReference(CString refPartName,

 CBuilderObject* refTo);

 CBuilderAtomReference *CreateNewAtomReference(CString refPartName,

 CBuilderObject* refTo);

 CBuilderSet *CreateNewSet(CString partName);

 CBuilderConnection *CreateNewConnection(CString connName,

 CBuilderObject *src, CBuilderObject *dst);

 virtual void TraverseModels(void *pointer = 0);

 virtual void TraverseChildren(void *pointer = 0);

};

The CBuilderAtom class does not provide any new public methods.

class CBuilderAtom : public CBuilderObject {

public:

};

The CBuilderAtomReference class provides the GetReferred function that returns the
atom (or atom reference) referred to by the given reference.

class CBuilderAtomReference : public CBuilderObject {

 const CBuilderObject *GetReferred() const;

};

Even though the GME deals with ports of models (since models cannot be connected
directly, these are the objects that can be), the component interface avoids using
ports for the sake simplicity. However, model references mandate the introduction of
a new kind of object, model reference ports. A model reference contains a list of port
objects. The GetOwner method of the CBuilderReferencePort class return the model
reference containing the given port. The GetAtom method returns the atom that
corresponds to the port of the model that the model reference port represents.

class CBuilderReferencePort : public CBuilderObject {

public:

 const CBuilderModelReference *GetOwner() const;

 const CBuilderAtom *GetAtom() const;

};

The CBuilderModelReference class provides the GetRefered function that returns the
model (or model reference) referred to by the given reference. The GetRefereePorts
return the list of CBuilderReferencePorts.

class CBuilderModelReference : public CBuilderObject {

 const CBuilderReferencePortList &GetRefereePorts() const;

 const CBuilderObject *GetReferred() const;

};

A CBuilderConnection instance describes a relation among three objects. The owner
is the model that contains the given connection (i.e. the connection is visible in that

Generic Modeling Environment User's Manual High-Level Component Interface • 78

model). The source (destination) is always an atom or a reference port. If it is an
atom then it is either contained by the owner, or it corresponds to a port of a model
contained by the owner. So, in case of atoms, either the source (destination) or its
parent is a child of the owner. In case of a reference port, its owner must be a child of
the owner of the connection.

class CBuilderConnection : public CBuilderObject {

public:

 CBuilderModel *GetOwner() const;

 CBuilderObject *GetSource() const;

 CBuilderObject *GetDestination() const;

};

The CBuilderSet class member function provide straightforward access to the
different components of sets.

class CBuilderSet : public CBuilderObject {

public:

 const CBuilderModel *GetOwner() const;

 const CBuilderObjectList *GetMembers() const;

 bool AddMember(CBuilderObject *part);

 bool RemoveMember(CBuilderObject *part);

};

Example
The following simple paradigm independent interpreter displays a message box for
each model in the project. For the sake of simplicity, it assumes that there is no
folder hierarchy in the given project. The component.cpp file is shown below.

Generic Modeling Environment User's Manual High-Level Component Interface • 79

#include "stdafx.h"

#include "Component.h"

void CComponent:: InvokeEx(CBuilder &builder,CBuilderObject *focus,

 CBuilderObjectList &selected, long param)

{

 const CBuilderFolderList *folds = builder.GetFolders();

 POSITION fPos = folds->GetHeadPosition();

 while(fPos) {

 CBuilderFolder *fold = folds->GetNext(fPos);

 const CBuilderModelList *roots = fold->GetRootModels();

 POSITION rootPos = roots->GetHeadPosition();

 while(rootPos)

 ScanModels(roots->GetNext(rootPos),fold->GetName());

 }

}

void CComponent::ScanModels(CBuilderModel *model, CString fName)

{

 AfxMessageBox(model->GetName() + " model found in the " +

 fName + " folder");

 const CBuilderModelList *models = model->GetModels();

 POSITION pos = models->GetHeadPosition();

 while(pos)

 ScanModels(models->GetNext(pos),fName);

}

Extending the Component Interface
The previous example used the build-in classes only. The component writer can
extend the component interface by her own classes. In order for the interface to be
able to create the builder object network instantiating the new added classes before
the user defined interpretation actually begins, a pair of macros must be used.

The derived class declaration must use one of the DECLARE macros. The
implementation must include the appropriate IMPLEMENT macro. There is a pair of
macros for models, atoms, model- and atom references, connections and sets. The
following list describes their generic form.

Generic Modeling Environment User's Manual High-Level Component Interface • 80

DECLARE_CUSTOMMODEL(<CLASS>,<BASE CLASS>)

DECLARE_CUSTOMMODELREF(<CLASS>,<BASE CLASS>)

DECLARE_CUSTOMATOM(<CLASS>,<BASE CLASS>)

DECLARE_CUSTOMATOMREF(<CLASS>,<BASE CLASS>)

DECLARE_CUSTOMCONNECTION(<CLASS>,<BASE CLASS>)

DECLARE_CUSTOMSET(<CLASS>,<BASE CLASS>)

IMPLEMENT_CUSTOMMODEL(<CLASS>,<BASE CLASS>,<NAMES>)

IMPLEMENT_CUSTOMMODELREF(<CLASS>,<BASE CLASS>,<NAMES>)

IMPLEMENT_CUSTOMATOM(<CLASS>,<BASE CLASS>,<NAMES>)

IMPLEMENT_CUSTOMATOMREF(<CLASS>,<BASE CLASS>,<NAMES>)

IMPLEMENT_CUSTOMCONNECTION(<CLASS>,<BASE CLASS>,<NAMES>)

IMPLEMENT_CUSTOMSET(<CLASS>,<BASE CLASS>,<NAMES>)

Here, the <CLASS> is the name of the new class, while the <BASE_CLASS> is the
name of one of the appropriate built-in class or a user-derived class. (The user can
create abstract base classes as discussed later.) The <NAMES> argument lists the
names of the kinds of models the given class will be associated with. It can be a
single name or a comma separated list. The whole names string must be
encompassed by double quotes.

For example, if we have a "Compound" model in our paradigm, we can create a
builder class for it the following way.

Generic Modeling Environment User's Manual High-Level Component Interface • 81

// Component.h

class CCompoundBuilder : public CBuilderModel

{

 DECLARE_CUSTOMMODEL(CCompoundBuilder, CBuilderModel)

public:

 virtual void Initialize();

 virtual ~CCompoundBuilder();

// more declarations

};

// Component.cpp

IMPLEMENT_CUSTOMMODEL(CCompoundBuilder, CBuilderModel, "Compound")

void CCompoundBuilder::Initialize()

{

 // code that otherwise would go into a constructor

 CBuilderModel::Initialize();

}

CCompoundBuilder::~CCompoundBuilder()

{

 // the destructor

}

// more code

The macros create a constructor and a Create function in order for a factory object to
be able to create instances of the given class. Do not define your own constructors,
use the Initialize() function instead. You have to call the base class implementation.
These macros call the standard MFC DECLARE_DYNCREATE and IMPLEMENT
DYNCREATE macros.

If you want to define abstract base classes that are not associated with any of your
models, use the appropriate macro pair from the list below. Note that the <NAMES>
argument is missing because there is no need for it.

Generic Modeling Environment User's Manual High-Level Component Interface • 82

DECLARE_CUSTOMMODELBASE(<CLASS>,<BASE CLASS>)

DECLARE_CUSTOMMODELREFBASE(<CLASS>,<BASE CLASS>)

DECLARE_CUSTOMATOMBASE(<CLASS>,<BASE CLASS>)

DECLARE_CUSTOMATOMREFBASE(<CLASS>,<BASE CLASS>)

DECLARE_CUSTOMCONNECTIONBASE(<CLASS>,<BASE CLASS>)

DECLARE_CUSTOMSETBASE(<CLASS>,<BASE CLASS>)

IMPLEMENT_CUSTOMMODELBASE(<CLASS>,<BASE CLASS>)

IMPLEMENT_CUSTOMMODELREFBASE(<CLASS>,<BASE CLASS>)

IMPLEMENT_CUSTOMATOMBASE(<CLASS>,<BASE CLASS>)

IMPLEMENT_CUSTOMATOMREFBASE(<CLASS>,<BASE CLASS>)

IMPLEMENT_CUSTOMCONNECTIONBASE(<CLASS>,<BASE CLASS>)

IMPLEMENT_CUSTOMSETBASE(<CLASS>,<BASE CLASS>)

For casting, use the BUILDER_CAST(CLASS, PTR) macro for casting a builder
class pointer to its derived custom builder object pointer.

Example
Let's assume that our modeling paradigm has a model kind called Compound. Let's
write a component that implements an algorithm similar to the previous example. In
this case, we'll scan only the Compound models. Again, the folder hierarchy is not
considered. Here is the Component.h file:

#ifndef GME_INTERPRETER_H

#define GME_INTERPRETER_H

#include "Builder.h"

#define NEW_BON_INVOKE

//#define DEPRECATED_BON_INVOKE_IMPLEMENTED

class CComponent {

public:

 CComponent() : focusfolder(NULL) { ; }

 CBuilderFolder *focusfolder;

 CBuilderFolderList selectedfolders;

 void InvokeEx(CBuilder &builder,CBuilderObject *focus,

 CBuilderObjectList &selected, long param);

};

class CCompoundBuilder : public CBuilderModel

{

 DECLARE_CUSTOMMODEL(CCompoundBuilder, CBuilderModel)

public:

 void Scan(CString foldName);

};

#endif // whole file

The component.cpp file is shown below.

Generic Modeling Environment User's Manual High-Level Component Interface • 83

#include "stdafx.h"

#include "Component.h"

void CComponent::InvokeEx(CBuilder &builder,CBuilderObject *focus,

 CBuilderObjectList &selected, long param)

{

 const CBuilderFolderList *folds = builder.GetFolders();

 POSITION foldPos = folds->GetHeadPosition();

 while(foldPos) {

 CBuilderFolder *fold = folds->GetNext(foldPos);

 const CBuilderModelList *roots = fold->GetRootModels();

 POSITION rootPos = roots->GetHeadPosition();

 while(rootPos) {

 CBuilderModel *root = roots->GetNext(rootPos);

 if(root->IsKindOf(RUNTIME_CLASS(CCompoundBuilder)))

 BUILDER_CAST(CCompoundBuilder,root)->Scan(fold->GetName());

 }

 }

}

IMPLEMENT_CUSTOMMODEL(CCompoundBuilder, CBuilderModel, "Compound")

void CCompoundBuilder::Scan(CString foldName)

{

 AfxMessageBox(GetName() + " model found in " + foldName +

 " folder");

 const CBuilderModelList *models = GetModels("CompoundParts");

 POSITION pos = models->GetHeadPosition();

 while(pos)

 BUILDER_CAST(CCompoundBuilder,models->GetNext(pos))->

 Scan(foldName);

}

Generic Modeling Environment User's Manual High-Level Component Interface • 84

Meta Object Network

What is MON?
Using the previous version of BON the users experienced that lots of implementation
issues could be solved more simply if they had a simple and well-defined interface to
the metamodel of their domains. The MON makes the paradigm available at the time
of writing components. All information covered by the metamodel are accessible
(from the aspect and valid connections between objects to constraints).

The benefits are obvious:

• MON is the key to write paradigm-independent interpreters or plug-ins to GME
avoiding to get into the details of COM.

• For a user the definition of a GME metamodel sometimes could be very difficult
to understand. With MON GME developers and interpreter writers can examine
the wellness of the paradigm easily and may get more familiar with rules how a
GME paradigm is specified and interpreted.

• It made possible to implement BON2 on the base of well-specified interface.
BON2 is developed on the basis of MON and it depends tightly to the classes
defined in MON, as you can see in the latter subsections.

• References to a metaobject can be done with the metaobject itself eliminating
the mistakes came from misspelled names for example.

Whenever GME or the users execute a component, the paradigm is always accessible
to the component via MON. The meta object network is read-only, and can be
altered indirectly with reinterpretation only (or modifing manually the .xmp file
containing the interpreted metamodel).

The meta object network is created during the initialization time of the components
and it is already readable when the user’s initialization code runs.

The time of the creation of the specific MON may take couple of seconds depending
of the complexity of the paradigm.

Basic MON Classes
The next figure shows clearly the inheritance chain between the core classes of
MON.

MetaObject is the base class for all classes whose instances have unique identifier
(MetaReferenceID). This MON class corresponds to the IMgaMetaBase COM
interface which has common meta properties (identifier - mentioned above, name –
string identifier, displayed name).

Among the basic classes there are only three which do not have ancestors:

Project corresponds to the IMgaMetaProject which is the root of the object network.
Because it contains directly or indirectly all metaobjects (i.e. all MON classes have
the method project() to access the project), Project offers methods with which the user
can obtain all instances of a specific metakind or a meta-relation and she can find the
MetaObject correspondent to a MetaReferenceID, to the name of a metakind or to
name of an Aspect.

Generic Modeling Environment User's Manual High-Level Component Interface • 85

MON classes, which have corresponding COM interfaces

RegistryNode corresponds to the IMgaMetaRegNode COM interface which is simply a
name-value pair with the extension that the nodes are organized into a tree called
Registry. A MetaObject always has this Registry, even it is absolutely empty. For the
sake of clarity the MetaObject’s registry() returns a dummy RegistryNode object from
which all ‘root’ nodes may be accessed.

Constraint is associated with class Object. Object corresponds to metakind, i.e. Folder,
FCO and descendants of FCO. This class is introduced only by MON, it does not have
the appropriate COM interface.

The not-mentioned classes will be discussed in the following subsections.

Meta-Kinds in MON
In this subsection the meta-kinds and their specific relationships are discussed. These
meta-kinds are the following: Folder and FCO which is the base of Atom, Model,
Connection, Set and Reference. In the context of UML these meta-kinds are
stereotypes denoting what kind of relationships they can take part in.

These are shown in the next figure without the meta-kind Atom, because this concept
means a simple, undividable entity (class in UML) which does not have any special
and additional properties that FCO has.

Folder is similar to package or namespace but compairing with the package concept
in UML, in the same paradigm more than one Folder may exist (they can contain
different kinds). Because of this fact, each folder can have different semantics and
they are considered as kinds and must have unique names with fcos.

In GME Model is the most important concept, because it specifies with Containment
the hierarchical structure of the objects in a GME project. As it is shown in the
figure, Containment is a Model-FCO pair with a unique name in the context of the
Model. In contrast to UML, regarding the relationships instead of class GME deals

Generic Modeling Environment User's Manual High-Level Component Interface • 86

with Containment which corresponds to the containment role and IMgaMetaRole COM
interface. With this concept more sophisticated paradigms may be created without
further constraints (e.g. in a class only that student may take part in a golf club
whose all grades are ‘A’ – Class ~ Model, Student ~ FCO, Excellent ~ Containment
GolfClub ~ Set) That is why Set and Reference are associated with Containment
instead of FCO. These associations simiralry to FolderContainment are blue colored
denoting that they are introduced only in MON.

MON classes with their specific relations

Connection is more complicated than Reference or a Set. The meaning of the classes is
described well with a bidirectional connection in whose case a connection has two
specifications regarding the two directions how two containment (usually fcos with
their all containments) can be connected. In the metamodelling environment only
binary connections can be created with src and dst ConnectionRole. Except of
Connection and Containment all classes are blue-colored because COM objects cannot
be assigned to the instances unambiguously.

Specific GME Concepts
Via MON all information related with aspects can be obtained. ModelInAspect
association describes which Model in which Aspect can be opened in the model editor.

Generic Modeling Environment User's Manual High-Level Component Interface • 87

ContainmentPart, which corresponds to IMgaMetaPart COM interface, tells the user
which containment roles are visible in the particular aspect.

Relationships of Attributes, Aspects, RegistryNodes and Constraints

How the MetaProject relates to other classes

Generic Modeling Environment User's Manual High-Level Component Interface • 88

In GME there are two kind of attributes, local and global attributes. Local attributes
are defined directly in the context of an fco. Global ones may be associated with
more than one fco (AttributeAggregation).

Constraint is contained by Object which corresponds to metakind and the last concept
is the RegistryNode mentioned earlier.

That is shown in the last figure Project contains MetaObject and all associations
which mean many-many relationships between metaobjects.

How to Use MON?
We mentioned earlier BON2 is based on MON thus it is obvious there are a lot of
similarities between the two object network. Because for an interpreter writer the
architecture of BON2 is more important than MON, we will mention the specific
usage and differencies during the discussion of BON2.

Generic Modeling Environment User's Manual High-Level Component Interface • 89

Builder Object Network version 2.0

Architecture of BON2
So that the user will use and extend BON2 appropriately, she must understand the
architecture and the essential concepts implemented by default in the object network.
When somebody would like to write an interpreter, she wants to do it as fast as it is
possible, she does not want to deal with typical programming issues (i.e. object
disposal, compexity of COM, etc.) and she would like to face only with task came
from specific domain. If an interpreter writer follows the rules discussed in these
subsections and she is familiar with GME, she almost has to know nothing about
C++ and COM to achieve the goal simply and very fast.

BON2 defines three layers (four layers) based on each other:

• COM layer (0. layer) – Simply to say, this is the programmable
interface of GME, the lowest layer which should be absolutely hidden
for the user because of its complexity and in the case of interpreters the
superfluous knowledge to use COM properly. Correspondent files are
meta.idl, mga.idl. Example: IMgaFCO COM interface.

• Implementation layer (1.a. layer) – This layer is the core of BON2 in
which all easy-to-use calls using MON are translated into COM
operations. This is the place where BON objects are cached also and
where the basics of BON2 extensions are implemented. Correspondent
files are MONImpl.h, BONImpl.h. Example: BON::FCOImpl
implementation class.

• Interface layer (1.b. layer) – This constints of those classes and
operations which are exported to the user (i.e. they have public
visibility). These are discussed in the Appendix of MON and BON. In
the current state of BON2 this layer is built into the previous one.
Correspondent files are MON.h, BONImpl.h. Example should be:
BON::FCOInt interface class, but it is th same BON::FCOImpl.

• Wrapper layer (2. layer) – The top most layer consists the wrappers
which handles the objects’ references instead of the user and serves
pointer-like interface. When a user uses BON2, she always has to deal
with these classes. Correspondent files are MON.h, BON.h. Example:
BON::FCO wrapper class.

Wrapper Classes
The wrappers are created in order to ease to implement components and let the user
concentrate only the interpreter writing.

First of all wrappers should be considered as special pointers (i.e. in the
programming terminology smart-pointers) which hold a pointer to a real object and if
all (direct or indirect) references are released to the real object, they disposes the
object automatically. Consequently in the aspect of a component implementor there
is no difference between to wrapper object if they hold pointer to the relevant, real
object. That is why, in lots of cases there is no point to create wrapper objects
dinamically or get the address of them. However it is not prohibited, it is not
recommended because if the user did not dispose only one wrapper pointer, memory
leak will be the result (because of the dependencies it can be very serious).

Generic Modeling Environment User's Manual High-Level Component Interface • 90

Of course wrapper classes make available the relevant object’s pointers because they
serve the specific interface of the class itself. For example BON::FCO let access to
the pointer BON::FCOImpl because the implementation class has the proper
operations of FCO. Considering BON classes this indirection goes with operator[->] ,
in contrary MON wrappers use the simple operator[.]. Here is an example demonstrate
the mentioned above.

BON::FCO fco; // Here is an fco.

// fco.isPort(); // This wiould result a compiler error because the wrapper
does not have this operation.

fco->isPort(); // The operator[->] will result a BON::FCOImpl pointer.

MON::FCO metafco = fco->getFCOMeta(); // obtain the definition of the FCO.

std::string strKindName = metafco.name(); // get the name of the meta, the
kindname of the object

It is important to mention that, although advanced programmers may get the pointer
of the implementation object and may store it outside of wrappers, it is not
recommended also, because they have to be sure somehow the pointer is valid and
not disposed already. With the wrappers the validity of a BON object can be decided
easily thanked to operator[bool] and to operator[!].

BON::Project project; // Let’s assume the project is valid.

BON::Folder root = project->getRootFolder(); // Get the root folder

if (root) AfxMessageBox(“RootFolder always exists!”);

BON::Folder parent = root->getParentFolder(); // Get the parent of the root,
which is NULL.

if (! parent) AfxMessageBox(“RootFolder never has parent”);

The user can check the equality of two BON object with the operator[=] and
operator[!=]. It must be emphasized that this equality means two COM objects
equality and the wrappers’. It is not necessary to obtain the implementation pointers
to check whether two objects are equal or not. The operator[<] makes possible that the
objects may be included into any kind of STL container including sets and maps
also. These operators can be used for all BON objects (e.g. BON::Project is
comparable with BON::ReferencePort).
The last important feature of wrappers is the casting mechanism. This is
implemented via the copy constructors and assignment operators. If the cast
succeeds, then the pointer held by the appropriate wrapper will be valid, otherwise it
will be null. To understand this, let’s see the following example.

BON:.Model child; // Let’s assume child is valid

BON::Object parent = child->getParent();

if (parent) AfxMessageBox(“This is always valid”);

BON::Model model = object;

if (model) AfxMessageBox(“The parent is a model”);

if (BON::Folder(object)) AfxMessageBox(“The parent is a folder”);

These facilites are implemented in the wrapper classes, the operations related with
specific metakinds are implemented in the implementation classes in case of BON.
For details see the Appendix about BON invocations and classes.

Generic Modeling Environment User's Manual High-Level Component Interface • 91

Objects’ Lifecycle in Components
However the user does not have to deal with the construction and destruction of
BON objects, it is good to know how it is implemented and what are the guidelines
regarding this issue.

A BON object is always created at the first time when the user obtain a reference to a
COM entity. In most cases (but not necessarily) an instance of a BON
implementation class is assigned to the appropriate COM object and the BON object
is cached.

Because BON makes the COM architecture more user-friendly it is obvious that
more than one BON object (BON interface) may exist and is assigned to the same
COM object. It is the reason why the usage of wrappers are recommended. Simply to
say they have the responsibility to decide when a BON object must be erased from
the cache.

The time of disposal of objects depends on two essential factors and these are more
complicated than they seem to be:

the component’s type.

the number of references to a BON implementation object.

The whole meta object network (all MON objects) is created when the component
starts to run and it is destructed when the component accomplish its task.

Objects in Add-ons and in Interpreters
The time when objects are freed differs in case of add-ons and interpreters (plug-ins
are regarded here as paradigm-independent interpreters). The difference is based on
the usual process of the components.

As we mentioned above BON objects are created if and only if they are required to
be constructed (i.e. the first time COM objects are retrieved) in contrast with the
previous version of BON, where the whole project was mirrored and all BON objects
were created at the time of the component initialization.

When the user writes an interpreter it is likely that she would like to use an object
more than once and she would like to eliminate the time consumed by the
construction and destruction again and again. Thus in case of interpreters a BON
object is cached (remains in the memory) until the component finishes to run. It
means that if an object is retrieved it will not be disposed even if there is no
reference to it any more.

In case of add-ons the behaviour is different because of the kind of the component.
Add-ons associated with a project run and occupy memory in the whole time until
the project is opened. If we followed the previous rule of managing objects, the
memory would grow while the add-on would run. Therefore in case of add-ons a
BON object is immediatelly destructed after the last direct or indirect reference is
released.

Aggregated Reference-counting
As we mentioned earlier wrapper classes are smart-pointers, they manages the
references to an object and disposes a BON implementation instance if the last
reference is released.

Generic Modeling Environment User's Manual High-Level Component Interface • 92

As we know objects, are cached deeply in BON. This caching mechanism means lots
of cross-references regarded the fact that the object is retrieved itself and what kind
of relationships they can take part in.

When we retrieve an object (e.g. the root folder of the project) at the first time, we
create the first reference to the object. Because the singleton project contains all
objects in the project, we create an indirect reference to the project via the object.
The projects will be disposed if and only if all references (direct and indirect) are
disposed.

As we can see later, this type of object management works only if the references do
not form a directed cycle. In BON by default there are only DAGs (Directed Acyclic
Graphs) in which the destruction of the BON objects are garanteed. However when a
user extends BON classes she may store wrapper instances (i.e. references to BON
implementation instances), thus it is likely that reference cycles will occur. To avoid
this the user has to set everything to null manually in the finalization.

Extending Interpreters
The lifecycle of GME components is the same. After they are intialized they start to
run, do their tasks and terminates disposing the acquired resources.

During the initialization all additional resources of the component of the user must
be obtained and created. This can be done completed the initialize() method of
BON::Component class. When this code part runs, the singleton project for the
IMgaProject and the whole meta object network are already created.

During the finalization all resource must be released. The process of disposal
consists of the destruction of all BON and MON objects (releasing all references to
BON objects) and releasing the additional resources (database connections, e.t.c.).
This can be completing the finalize() operation of BON:.Component. Of course,
additional resources include the additional references to BON objects also. This must
be done in the finalize() operation of BON extensions and not in the BON::Component.
The steps of finalization are the following (these are done automatically):

• Call finalize() of BON::Component.

• Iterate over the set of the existing BON objects and call their finalize().

• Reference counting mechanism takes care of the BON objects disposal,
and everything is destructed.

Where the component core implementation must be included is different in case of
add-ons and interpreters.

The interpreters entry point is the invokeEx() of BON:.Component and this is the main
part. Here is a descriptive example:

void Component::invokeEx(Project& project, FCO& currentFCO, const
std::set<FCO>& setSelectedFCOs, long lParam)

{

 AfxMessageBox(“Project: “ + CString(project->getName().c_str()));

 if (! Model(currentFCO)) {

 AfxMessageBox(“The context of the component must be a model!”)

 return;

 }

Generic Modeling Environment User's Manual High-Level Component Interface • 93

 CString strObjects(“Selected objects are: \r\n”);

 for (std::set<FCO>::iterator it = setSelectedFCOs.begin() ; it !=
setSelectedFCOs.end() ; it++) {

 strObjects += CString((*it)->getName().c_str()) + “\r\n”);

 }

 AfxMessageBox(strObjects);

} // end of invokeEx

Add-ons and Events
The entry point of an add-on means the reaction to the specific event of a specific
object and it can be accomplished different sort of ways.

The user may handle and react to all events in objectEventPerformed() of
BON::Component. Here is an example:

void Component::objectEventPerformed(Object& object, unsigned long event,
VARIANT v)

{

 // v in this version of BON2 is unused, in the future it will contain

 // appropriate event parameter(s)

 AfxMessageBox(“The context: “ + CString(object->getName().c_str()));

 // At the same time more than one event may be performed.

 CString strEvents(“Events: \r\n”);

 for (MON::ObjectEventType eType = MON::OET_ObjectCreated ; eType !=
MON::OET_All ; eType++) {

 strEvents += CString(toString(eType).c_str()) + “\r\n”;

 }

 AfxMessageBox(strEvents);

}

This way of handling events is the most general, it is likely the user may prefer the
BON::EventListener interface. This interface has the eventPerformed() operation which
is empty by default. The operation has only a BON::Event argument passed containing
the context object, the event type, and the event parameters (if they exist).

The BON::EventListener interface must be implemented by a class and the instance
of the appropriate class has to be passed to the BON project or to a BON object
theirs addEventListener() operation. An event listener may specify the type of the
events it can react to. It can be done with overriding the getAssignments() operation
of the listener (it reacts to all events by default).

The order of event handling:

EventListeners attached to the project are called if they active.

EventListeners attached to the context object are called if they active.

objectEventPerformed() of the BON:.Component is called.

BON Extension Classes
So that the user can write an interpreter which is simple enough to modify and create
the new version of BON must provides an easy-to-use base. By default only the
generic implementation is available (i.e. BON::FCO and BON::FCOImpl
implementing the default functionality of the fco concept) and this must be used to

Generic Modeling Environment User's Manual High-Level Component Interface • 94

realize extensions according to a specific paradigm. Following a few rules, and
implement the specific behaviour as well as using some not too complicated macros
the task is accomplished quickly.

The extendable classes are BON::FCO, BON::Atom, BON::Model, BON::Connection,
BON::Set and BON::Reference. Of course a user extension can be derived also.

We will demonstrate the extension with a simple example. Let us assume that there
is a model whose name is ‘Compound’ and the user wants to create a BON class
which extends the model’s functionality with an operation. The operation returns a
set containing Compound objects having at least two children.

Realize the Implementation Class
The realization of a BON extension must be done in the extension layer (i.e. the
implementation class must be derived). In order to do this the following rules are
important:

• Although the implementor extends the implementation class

• The user always must use the appropiate wrapper classes, and not the
implementations.

• If some initialization is required, then the initialize() method must be
overridden.

• In case of interpreters in lost of cases there is no point to cache the
immediate and unfiltered result of a generic call because only the
wrappers are always created, the objects exist while the component
runs.

• If BON objects are cached by the extension additionally, it counts as
additional resource and the containers has to be emptied and objects
must be set to null in the overriden finalize() method.

• It is good practice to concatenate ‘Impl’ string to the name of the
implementation class. The used appropriate wrapper class uses the
name without ‘Impl’.

Here is our Compound implementation:

Generic Modeling Environment User's Manual High-Level Component Interface • 95

class CompoundImpl

 : public BON::ModelImpl // extending the implementation class

{

public :

 void initialize()

 {

 // cache the proper child models

 std::set<BON::Model> temp = getChildModels();

 for (std::set<BON::Model>::iterator it = temp.begin() ;

 it != temp.end() ; it++) {

 if ((*it)->getObjectMeta().name() == “Compound” &&

 (*it)->getChildFCOs().size() >= 2) {

 mySet.insert(*it);

 }

 }

 }

 void finalize()

 {

 mySet.clear(); // important to avoid reference cycles

 }

 std::set<BON::Model> getMyCompounds()

 {

 return mySet;

 }

private :

 std::set<BON::Model> mySet;

}; // end of class

Create the Wrapper Class
After the implementation is ready the user has to generate an appropriate wrapper
class to the implementation class and assign it to a specific kind defined by the
paradigm. These go with to macros: DECLARE_BONEXTENSION and
IMPLEMENT_BONEXTENSION.

DECLARE_BONEXTENSION macro stands for creating the appropriate wrapper and it
always has to preceed the macros defining the classes which derive from this class.
The parameters are the following:

• Base wrapper class – This class has to be the wrapper class of the base
class of the user-defined implementation class. In our case it is
BON::Model.

• Implementation class – This is the user-defined implementation class.
In our case it is CompoundImpl.

• Wrapper class – This is the class which has to be generated to the
specified implementation class. This will be the user-defined wrapper
class. In our case it is Compound.

Generic Modeling Environment User's Manual High-Level Component Interface • 96

DECLARE_BONEXTENSION(BON::Model, CompoundImpl, Compound);

IMPLEMENT_BONEXTENSION macro, residing in a .cpp file, is for assigning the
BON extension to a kind or a containment defined by the paradigm, or to a meta-
kind defined by GME. It is allowed that the implementor specifies more than one
kind, even it is valid to assign a concept to a kind and a containment at the same
time. The parameters are the following:

• Wrapper class – The name of the BON extension which must be
assigned. In our case it is Compound.

• Assignment string – This is a string literal containing a space separated
list of kind names, containment rolenames or meta-kind names. In our
case it is simply “Compound”.

IMPLEMENT_BONEXTENSION(Compound, “Compound”);

After this step the BON extension to the Compound concept defined by the paradigm
is ready to use everywhere. Of course, all rules are true for the extension also (e.g.
only the generated Compound wrapper class is permitted to use and it behaves as
other wrapper classes do).

It is not required that the name of the wrapper class is the same as the kindname. It is
only good practice.

Assigning BON Extensions
As we mentioned above not only kinds can be specified for a BON extension, but
containment roles, even metakinds as well. However it is possible that for one COM
object more than one BON extension could be created. In order to avoid collisions
and resolve them (if we can) there is a precedence defined among the names.

In the following enumeration the first is the highest precendence.

• Containment rolename defined by the paradigm (e.g. “CompoundPart”)

• Kindname defined by the paradigm (e.g. “Compound”)

• Metakindname defined by GME (e.g. “BON::Model”, “BON::FCO”, ...)

The rules are the following:

There is containment role assigned

• Only one containment role : create appropriate BON extension.

• More than one containment role : throw an exception.

There is kind assigned

• Only one kind : create appropriate BON extension.

• More than one kind : throw an exception.

There is metakind assigned

• Only one metakind and it complies with the implementation : create
appropriate BON extension.

• Throw an exception.

Generic Modeling Environment User's Manual High-Level Component Interface • 97

There is no assignment

• Create the appropriate generic BON implementation.

A more sophisticated example is the following. The user creates an AtomEx BON
extension with additional functionality extending the generic GME concept Atom.
After that she extends the AtomEx with Parameter, and Parameter is extended with
MainParameter which is assigned to a specific role.
DECLARE_BONEXTENSION(BON::Atom,AtomExImpl,AtomEx);

DECLARE_BONEXTENSION(AtomEx,ParameterImpl,Parameter);

DECLARE_BONEXTENSION(Parameter,MainParameterImpl,MainParameter);

....

IMPLEMENT_BONEXTENSION(AtomEx,“BON::Atom”);

IMPLEMENT_BONEXTENSION(Parameter,“InputParameter OutputParameter Parameter”);

IMPLEMENT_BONEXTENSION(MainParameter,“MainParameter”);

Multiple Inheritance
It is a common scenario in whose case the implementor wants to use multiple
inheritance in the context of BON extensions. A tipical case is demonstrated in the
next figure.

Multiple inheritance with BON extensions

At first the user wants to implement a BON extension which corresponds to a
ProcessingUnit concept. The metakind of ProcessingUnit is FCO, therefore the class in
the implementation layer must be abstract and cannot be instantiated. Compound
derives from ProcessingUnit in the particular domain, so the implementation class
extends ProcessingUnitImpl. Because the metakind of Compound is Model it has to
derive from BON::ModelImpl also.

The rules, the user must comply with, are the following:

• Abstract BON extensions – If a user wants to mplement the common
behaviour of classes in a base class, but she does not want to or she
cannot assign any kind, containment to the extension, to create the
appropriate wrapper class she must use
DECLARE_ABSTRACT_BONEXTENSION,
IMPLEMENT_ABSTRACT_BONEXTENSION macros.

Generic Modeling Environment User's Manual High-Level Component Interface • 98

• Public inheritance – In the context of BON only public inheritances
may be used.

• Metakind compliance – In an inheritance chain of BON the user cannot
mix the metakinds except of FCO (e.g. all descendants of a BON
extension having Atom metakind will have Atom metakind)

• Virtual inheritances – During the realization of the implementation
classes in case of diamond inheritance virtual inheritance must be used
(see how ProcessingUnitImpl extends BON::FCOImpl). In case of wrapper
classes all inheritances all virtual.

• Multiple inheritance – In these cases DECLARE_BONEXTENSION2 or
DECLARE_BONEXTENSION3 can be used.

The example codes:

Generic Modeling Environment User's Manual High-Level Component Interface • 99

// Realization of the implementation classes

class ProcessingUnitImpl

 : virtual public BON::FCOImpl

{

 // Note: BON::FCOImpl is an abstract class by default

 void doSomething() { }

};

class CompoundImpl

 : public BON::ModelImpl, public ProcessingUnitImpl

{

};

// Declare BON extensions

DECLARE_ABSTRACT_BONEXTENSION(BON::FCO, ProcessingUnitImpl, ProcessingUnit);

DECLARE_BONEXTENSION2(BON::Model, ProcessingUnit, CompoundImpl, Compound);

// Implement BON wrappers (assignment if it is required)

IMPLEMENT_ABSTRACT_BONEXTENSION(ProcessingUnit);

IMPLEMENT_BONEXTENSION(Compound, “Compound”);

// Using the extensions

void print(const BON::FCO& fco)

{

 if (BON::Model(fco)) AfxMessageBox(“It is a model!”);

 ProcessingUnit unit = fco;

 if (unit) {

 unit->doSomething();

 if (Compound(unit))

 AfxMessageBox(“It is a Compound!”);

 else

 AfxMessageBox(“It is another descendant of ProcessingUnit!”);

 }

} // end of method

Essential Classes of BON2
As we noted discussing how to use MON classes, there are a lot of similarities
between BON2 and MON regarding the usage and the architecture. This is because
BON2 bases on MON. Examining the figure about BON2 classes which has the
appropriate COM interface, we find that these classes are almost the same. For all
BON2 classes the user can find the proper operation with which she can obtain the
meta information (e.g. the operation BON::FCOImpl::getFCOMeta() returns MON::FCO).

Generic Modeling Environment User's Manual High-Level Component Interface • 100

Relationship between the Project and BON Objects, associations to MON classes

Looking at the next figure carefully, there are only two exceptional classes which do
not have the correspondent COM interface (i.e. ConnectionEnd and ReferencePort).
The concept of the ReferencePort may look familiar to whom had used the previous
version of BON, but there are essential differencies which will be discussed in the
next subsection.

BON classes, which have the corresponding COM interface

GME Metakinds in the Project
It is obvious that objects in projects have metakinds according to the paradigm and
they can play only the roles and can take part in the relationships that come from the
appropriate metakind. For example, if an object is a model (i.e. it is a BON::Model
whose meta is MON::Model), the user may obtain the children contained by the object.
The childrens are BON::FCO objects. The specific model kind (i.e. MON::Model
objects) tells the user what the childrens kinds can be (i.e. Compound model may
contain Primitive or Compound models among others).

If somebody is familiar a bit with GME, all the well-known GME concepts are
understandable except of a new one called ReferencePortContainer with ReferencePort
and ConnectionEnd.

Generic Modeling Environment User's Manual High-Level Component Interface • 101

BON classes with their specific relationships

ConnectionEnds and ReferencePorts
Let’s clarify with the previous and the next figure what ReferencePort means.

During the explanation we assume that there is only one Aspect in the paradigm in
order not to deal with relationships between objects, ports and aspects.

ReferencePort and Its Container
If a reference referred to a model, then this reference was called
BuilderModelReference in the previous version of BON. Model references were special
in the aspect they might contain reference ports the model – referred by the special
reference - contained ports. If an fco contained by the model played the port role,
there was a reference port contained by the model reference referring to the fco. The
port (i.e. the fco) and the reference port were different objects.

In BON2 these concepts are retained but they are clarified. Consequently has
essential differencies.

BuilderModelReference of BON is called ReferencePortContainer in BON2. GME allows
that a reference may refer to models an other objects which are not models. It is
obvious a reference may ‘contain’ reference ports if and only if it refers to a model.
If the user changes the referred object from a model to an atom, then the reference
cannot ‘contain’ reference ports any more. Because of these facts
ReferencePortContainer is an interface (in contrast with BuilderModelReference object of
BON) which is implemented by the reference in the time it refers to a model.

That means references can contain reference ports indirectly through the
ReferencePortContainer interface which always has to be obtained froim the reference
before usage and which is not recommended to cache by the component
implementor. Consequently only ReferencePortContainer contains reference ports.

Generic Modeling Environment User's Manual High-Level Component Interface • 102

BON::ReferencePort is retained in BON2, but its primary ancestor is not the same as
the ancestor of BON::FCO. The explanation is that primarily fco is a metakind and
reference port is another concept defined because of connections.

Relationship Between ReferencePorts
In the next figure we find a model called Model and four references (called Ref1, Ref2,
Ref3 and Ref4) referring directly or indirectly to the model. Models contains two
atoms called P1 and P2 which are ports.

Relationships of Model references and Reference-ports

Because the references ‘refers’ to a model, they implements the
ReferencePortContainer interface and they ‘contains’ reference ports with the same
names (P1 and P2).

Reference ports refer to the port contained by the model (blue lines in the figure).
There is a relationship between reference ports refering to the same port according to
their containers. We say that the reference ports are the descendants of the port. Ref2
refers to Model via Ref1. P2 of Ref1 is the parent of P2 of Ref2. The parent of P2 of
Ref1 is null because Ref1 refers to Model directly. P2 of Ref1 has three descendant
reference ports and two children (i.e. two immediate reference ports). This
relationship might be important for the component implementor if she wants to
handle the connections between objects in advanced way.

ConnectionEnd and Connection
Connections in BON2 is implement in a different way comapring to the previous
implementation. In both ends of a connection only ConnectionEnds can stand. A
ConnectionEnd can be an object itself – to be more precize: an fco - or reference

Generic Modeling Environment User's Manual High-Level Component Interface • 103

ports. ReferencePort derives from ConnectionEnd because this concept is not placable
into the set of metakinds and it has different meaning only in the case if it stands for
an end of a connection.

Let’s see the following examples considering the previous figure to understand the
described issues.

// the model called Model in the figure

BON::Model model;

// P2 of Model, we omit the aquiring operations

BON::Atom p2_model;

// Ref1 refers to Model

BON::Reference ref1 = model->getReferredBy();

// PortContainer of the model reference

BON::ReferencePortContainer rpc_ref1 = ref1->getRefPortContainer();

// Find the ReferencePort referring to P2

BON::ReferencePort p2_ref1 = rpc_ref1->getReferencePort(p2_model)

....

// Parent of the ReferencePort is null

p2_ref1->getParentPort();

// Descendants of P2 of Ref1 containig P2 of Ref2, Ref3 and Ref4

p2_ref1->getDescendantPorts();

// Children of P2 of Ref1 containig P2 of Ref2 and Ref3

p2_ref1->getChildPorts();

// Get referred FCO (i.e. p2_model, P2 of Model) of P2 of Ref1.

P2_ref1->getFCO();

....

// Get objects connected to P2 of Model directly or indirectly (via reference

// ports). It includes A, A1, A2, A3 and A4.

p2_model->getConnEnds(“”, “”, true);

// Get objects connected to P2 of Model directly without reference ports

// It includes only A.

p2_model->getConnEnds(“”, “”, false);

// Get objects connected to P2 of Ref1 directly or indirectly (via descendant

// reference ports). It includes A1, A2, A3 and A4. A is not included.

p2_ref1->getConnEnds(“”, “”, true);

// Get objects connected to P2 of Ref1 directly without descendant reference

// ports. It includes only A1.

p2_ref1->getConnEnds(“”, “”, false);

It is good to know that the casting mechanism defined by the appropriate wrapper
classes works transparently between BON::ConnectionEnd, BON::FCO and its
descendants and BON::ReferencePort also. For example to decide whether a
connection end is a reference port we can do this in two ways.

if (BON::ReferencePort(connectionend) { // do something }

if (connectionend->isReferencePort()) { // do something }

Generic Modeling Environment User's Manual High-Level Component Interface • 104

Type Inheritance in BON2
Type inheritance is special feature introduced in GME. This issue is implemented by
interface called BON::TypeInhObject, BON::Type and BON:.Instance. These are interface
and an fco always implements one of BON::Type and BON:.Instance.

In order to obtain the type inheritance interface the user has to use the
getTypeInhObject() of BON::FCO. After a simple cast the user may obtain the type of
the instance or the subtypes of the type.

Obtaining the type inheritance interfaces the user implicitly holds a reference to the
fco itself.

Relationships of Attributes, Type-Inheritance Objects and RegistryNodes

Registry, Attributes and Object Preferences
The registry of a BON2 object is implement similarly to the registry of MON. The
root RegistryNode can be accessed with the getRegistry() of BON::Object. The root
registry node is defined in order to separate the interfaces, the real and existing root
nodes are children of the dummy root node.

Using registry it is important to know that caching registry nodes are not
recommended:

• If the user uses at least one registry node (even the dummy root), she
holds a reference to the appropriate object implicitly. So that the object

Generic Modeling Environment User's Manual High-Level Component Interface • 105

could be disposed all nodes must be released. This is true for
BON::Attribute also. This is true for BON::Attribute also.

• If the component not only reads the project but it may modify the
registry of an object or if the component is an add-on reacting to
events, then modifying or erasing at least one registry node, all registry
nodes of the object will be invalid and the user has to obtain them
again.

As we know, objects in the project has predefined properties defined by GME.
Mainly this properties are related to visualization and implemented in the registry of
the object. The appropriate access (including the type – integer, string, long, etc. -
and the registry path) of these values varies. Using them manually via the generic
registry interface is very error-prone and difficult to memorize.

This is the reason why special root registry nodes are introduced extending the
RegistryNode interface. These are the following: FCORegistryNode,
FCOExRegistryNode, ConnectionRegistryNode and ModelRegistryNode. Except of
FCOExRegistryNode which can be obtained from fcos which are not connections, the
further ones are obvious.

Some example:

// Get the color of the portnames of the port

COLORREF crPort = BON::ModelRegistryNode(model->getRegistry())->
getPortNameColor();

...

// Obtaining the position of an FCO in the Aspect ‘Aspect’

BON::Point pt = BON::FCOExRegistryNode(fco->getRegistry())->getLocation(
“Aspect”);

How to create a new component project

To create a new component, run CreateNewComponent.exe that comes as part of the
GME distribution. A dialog box (Create New Component) is presented to specify
the target directory and the component technology to be used. To work with the
interfaces described above, select Builder Object Network or Builder Object
Network II.

The second dialog box (Component Configurator) lets you specify the most
important characteristics of the component:

• Its type: Interpreter, Plugin or AddOn. (AddOns are not available when
using Builder Object Network version 1.0.)

• The component name

• The name of the paradigm(s) this component is associated with.
Multiple paradigms can be specified in a space-separated list.

• The component progID

• The component classname and the component type library name

• The UUID-s associated with the component class and its type library

• The location of the GME 6 interface files (IDL files) this component is
to be compiled to.

Generic Modeling Environment User's Manual High-Level Component Interface • 106

The resulting configuration is a ready-to-compile Visual Studio workspace
(Component.dsw, BonComponent.dsw or BON2Component.dsw). If the BON is
selected, simple Component.cpp and Component.h files are generated, in case of
BON2 these files are BON2Component.h and BON2Component.cpp. The user is
expected to implement the component by modifying these two files and adding other
files if necessary. The other files in the workspace are normally not modified by the
user, and for this reason they are generated with read-only attribute.

ConfigureComponent.exe, the application that brings up the Component
Configurator dialog box can be run any time to change component attributes. The
output is generated to the file specified by the –f command-line argument. It defaults
to ComponentConfig.h.

The appendix describes the procedure in detail. After you completed the steps
outlined there, you can build the new component dll. This component dll is
registered and associated with the paradigms you specify. When you edit a model
using one of these paradigms and press the interpret button, you launch this
component (if there are more than one components associated with the given
paradigm, a menu will pop up to choose from). The dll will be located and loaded at
this time.

Extending the Component Interface using the BON
Extender interpreter

After writing a few interpreters one can realize that the extension of the Component
Interface (as shown above) is a repetitive and boring task. The BON Extender
interpreter is aimed to automate this process. Based on a specific metamodel a
domain specific skeleton code is generated. Thus when you write your interpreter (in
the specific paradigm) you will have only to enrich the generated classes with the
functionalities you want.

The BON Extender interpreter creates specialized class definitions for all object
kinds (even for abstract ones). These specialized classes will be instantiated when
your interpreter executes. The output consists of the skeleton class definitions and
their implementation, in two files. The filenames are formed based on the paradigm
name, appended with the string “BonExtension”. A skeleton visitor class and a log
file is generated, also in the same directory, which has the name of the paradigm
appended by the “Visitor” and “BonExt.log” strings respectively.

We will discuss in detail the content of the class extensions header file.

Naming convention used
The plain names will be used for FCOs and Folders, Attributes. Since GME checks
the names of the fore-mentioned objects these names are usually valid identifiers for
C++ compilers. However in case of EnumAttributes the enumerated items will be
encapsulated by a C++ enumeration type. These fields may be defined without too
many restrictions during meta-modeling, so a name validation takes place,
converting non-alphanumeric characters to underscores. If the enumeration value
starts with a digit a leading underscore will be inserted.

In order to avoid name conflicts (e.g. in case default name is used: a Connection kind
may be named Connection) the specialized classes will be part of a namespace
generated based on the validated paradigm name, appended by the “_BON” string.

Generic Modeling Environment User's Manual High-Level Component Interface • 107

Below are some examples generated based on the SF paradigm. Processing and
Compound are model kinds in this paradigm.

namespace SF_BON {
DECLARE_ABSTRACT_BONEXTENSION(Model, ProcessingImpl, Processing);
DECLARE_BONEXTENSION(Processing, CompoundImpl, Compound);
class ProcessingImpl : public ModelImpl {
public:
 std::set<InputSignals> getInputSignals();
 std::set<OutputSignals> getOutputSignals();
 std::set<Signals> gets();
};

class CompoundImpl : public ProcessingImpl
{
public:
 // kind and role getters
 std::set<Processing> getParts();
};
}; // end namespace

Processing (with Model stereotype) has no ancestors in the metamodel, so it derives
from the BON::ModelImpl class. Compound derives from Processing so this will be
reflected in the generated skeleton, as well.

Container kinds, like Models, Sets and Folders, will have specialized get methods
returning the contained roles (in case of models) and kinds (in case of sets, folders).

The Compound class’ getParts() method returns a set of Processing instances (model
kind), so users don’t have to deal with the conversion from BON::Model to
SF_BON::Processing type since the method does this task. The method name is
based on the role name “Parts” (see containment relation between Compound and
Processing).

The Processing class has three get methods which are related: two get methods
(getInputSignals, getOutputSignals) which return the contained objects having
InputSignals and OutputSignals role, and an aggregated get method (gets) which
returns all objects derived from the Signal base. The suffix “s” comes from the role
name specified in the SF metamodell for the containment between Processing and
Signal. If this rolename had been empty then the getSignal name would have been
used. Sometimes name conflicts happen because of these naming conventions,
therefore the following distinction is made by the BonExtender: the aggregated get
methods may get an ”int dummy” parameter.

If the Signal atom had been non-abstract and the rolename empty in the meta-model
the following get methods would have been generated:

class ProcessingImpl : public ModelImpl {
public:
 std::set<InputSignals> getInputSignals();
 std::set<OutputSignals> getOutputSignals();
 std::set<Signals> getSignals(); // role getter
 std::set<Signals> getSignals(int dummy); // aggregated
};

Connections will have specialized source and destination get methods. However,
when a connection can have a reference port as its end the return value will be
simply BON::ConnectionEnd. In the case below no reference ports are involved
(based on best knowledge of the BON Extender interpreter) so a specialized class
like Signal will be returned by the get methods:

Generic Modeling Environment User's Manual High-Level Component Interface • 108

class DataflowConnImpl : public ConnectionImpl
{
public:
 // connectionEnd getters
 Signal getSrc();
 Signal getDst();

 ///BUP
 // add your own members here
 ///EUP
};

Beside this, the source and destination kinds will have two additional get methods:
one for inquiring the connection links (starting or ending at that particular kind),
another for inquiring the kinds connected to the object through a particular
connection.

class SignalImpl : public AtomImpl
{
public:
 // connection end getters
 std::multiset<Signal> getDataflowConnSrcs();
 std::multiset<Signal> getDataflowConnDsts();
 // connection link getters
 std::set<DataflowConn> getDataflowConnLinks();
 std::set<DataflowConn> getInDataflowConnLinks();
 std::set<DataflowConn> getOutDataflowConnLinks();

 ///BUP
 bool isMyParentPrimitive();
 std::string className() { return "Signal"; }
 ///EUP

};

Furthermore, all FCOs which have attributes will have special get methods
generated, with corresponding return types to their specification (in case of
EnumAttribute an enumeration type definition will be generated based on the items
declared in the “Menu items” field).

Ordering
The classes are generated into the header file based on the following principles:
groups are formed by classes which have inheritance relationship among themselves.
The groups are ordered based on how many model kinds they contain, in descending
order. Such a group is dumped in top-down order (based on inheritance). The
methods inside a class are categorized as attribute, connection get methods and role
get methods (for models) set-member get methods for (set).

The ”///BUP” and ”///EUP” (standing for “begin user part”, “end user part”)
comments are intended to provide a space where the user may add her own methods
and members. If the user decides to regenerate the skeleton (i.e. the paradigm
changes), she won’t have to insert once again her own method and member
definitions into the skeleton class definitions. The BON Extender interpreter will
parse for these special comments inside class definitions and it will insert the user
defined part into the new generated header file. This header file contains two global
BUP/EUP pairs, which are intended to give a place for the user’s class definitions, if
any. These global comments have to start on the first character of the line. The
BUP/EUP comments inside a class are not limited such way. These special
comments are inserted only in the generated header file.

Generic Modeling Environment User's Manual High-Level Component Interface • 109

Limited extension
It can happen that the user doesn’t intend to work with all classes generated for a
paradigm (i.e. the hardware definition part may be indifferent for implementer, since
her interpreter is concentrating on the dataflow part). The “Select classes to extend”
dialogue that appears during generation is intended for such cases. It has listed all the
classes which will be generated by default. If an object kind is selected for extension
then its ancestors are positively extended too, and if it is deselected then its
descendants are deselected too. If you want to limit the set of generated classes, then
it is recommended to select “no” for each root object (staying on top of the
inheritance hierarchy) in the domains you don’t want to deal with.

There is another way of using this feature: if you would like to extend the classes
only to some extent (not all classes down the inheritance hierarchy), you may like to
handle some derived classes together (i.e. you want to handle InputSignals and
OutputSignals together as Signal). In such cases you can select the base class
(Signal) and deselect the derived classes (InputSignal, OutputSignal). When your
interpreter will execute a base class instance will be generated for each derived
object in the model. This has consequences for the generated get methods of
containers (models, sets, folders): if a container is extended (Processing) and some of
its contained objects are not (InputSignal) then the specific getter (getInputSignals),
which is intended to give back a set of the specific kinds contained will return with
these objects cast to the nearest extended ancestor (Signals). There is a similar
mechanism for connections, too.

class ProcessingImpl : public BON::ModelImpl
{
public:
 std::set<Signal> getInputSignals();
};

Since FCO (as stereotype) objects are extended too, and may not be instantiated (at
modeling time no abstract FCO object is visible) some limitations exist, which are
enforced by the dialogue. If an object which inherits directly from an FCO is
deselected, then not only the objects below it, but the whole inheritance tree is
deselected.

If an FCO object is selected then not only its ancestors, but all of its FCO
descendants and their immediate non-fco children are selected too. In other words
the extension selection/deselection is limited to non-fco sections of the inheritance
trees.

If the user would like to extend some of the classes from the hierarchy below, then
ModelBase, AtomBase and SetBase classes are definitely needed. Their descendants
may be selected or deselected at the user’s choice.

Generic Modeling Environment User's Manual High-Level Component Interface • 110

Example metamodel for the BONExtender interpreter

Generic Modeling Environment User's Manual High-Level Component Interface • 111

Constraint Manager

Features of the new Constraint Manager
GME 6 contains the improved constraint manager which is fully compliant with the
standard OCL 1.4 specification. Here we enumerate the features of the Constraint
Manager, without delving.

Standard OCL features
The following features are new regarding the language (MCL), which was used
earlier to write constraints in GME.

• The language is a typed language.

• Undefined is introduced as a value.

• Variable declaration is supported. Performance and readability can be
taken into consideration.

• All OCL operators are implemented.

• Operators have the right precedence and associativity.

• All features of predefined primitive types are implemented.

• Types can be referred as ocl::Type, and not as ocl::String. Namespaces
can be used.

• Typecast is implemented.

• All compound types of OCL are implemented.

• Almost all predefined iterators (exception is sortedBy), as well as the
generic iterate are supported.

• Implicit variables are implemented.

• More sophisticated features and expression resolution are supported.

• Short-circuit operators and iterators are supported.

• Features defined by MCL are improved. More security is provided, but
these calls remain insecure.

• The meta-kind features are linked to the appropriate meta-kinds.

Generic Modeling Environment User's Manual Constraint Manager • 112

• Predefined OCL types are extended with some useful features.

• Standard access of attributes is supported.

New and Improved features in GME 6
The following features are new considering the functionality of the former version of
Constraint Manager.

• All former features and functionality are still available, although they
are either deprecated or improved.

• New kind (gme::Project) is introduced. New predefined variable called
project is available in expressions.

• The Constraint Function is made to be compliant with Constraint
Definitions defined by OCL 2.0.

• More sophisticated error detection at syntax and semantic checking.

• More detailed report about constraint violations.

• User-friendly dialogs reporting errors and violations.

• The state of the evaluation process is visible; however, it cannot be
interrupted yet.

• The Constraint Browser displays all constraints even if a constraint has
errors.

• The model is maintained in a clean state (deleted user-constraints and
enabling information are always eliminated)

• The interface of constraint-enabling functionality fits the concept of
kinds, types, subtypes and instances. (i.e. type inheritance)

Limitations and Special Issues
Due to some special properties of the GME Meta-Modeling environment, certain
extensions and limitations exist. These are discussed below.

Inheritance at Meta-Modeling Time
GME specifies three kinds of inheritance (standard, implementation and interface
inheritance). But none of these are part of GME Meta (i.e. meta-information
generated by Meta-Interpreter). Inheritance is defined only to help the meta-modeler
and to facilitate her work. Consequently, inheritances only act as operators at meta-
modeling time.

This situation requires us to ease some strict rules of standard OCL.

These rules include the following:

• Some well-defined abstractions, which were made by the modeler,
disappear because all information is lost. For example, if in future the
standard OCL rules about accessing an association-end are allowed,
then it is likely that meny association-ends cannot be used due to
ambiguity.

Generic Modeling Environment User's Manual Constraint Manager • 113

• For a kind, which is defined in the paradigm, if either its kind is
gme::FCO or its Is Abstract? flag is set, then it cannot be referred in OCL
expressions because these types will not appear in the interpreted meta.

• Inheritance information cannot be acquired between two kinds defined
by the paradigm, because this knowledge is lost during the
interpretation.

• Although standard OCL says that meta-kind information cannot be
obtained in expressions, referring to meta-kinds is allowed. For the
time being, this is the only way to get some common information about
kinds.

• If a constraint is associated with a kind, then the kind and all of its
descendants will get a constraint object which is the same as the
defined one, but is a distinct entity. This problem grows in size along
with the sizes of the XMP and XML files.

• If the modeler would like to write a Constraint Definition and attach it
to the kind, then the definition will be associated only with that kind,
and not with its descendants. This is because there is no such a
mechanism mentioned in the previous point. Therefore, if the modeler
wants to have a definition attached to more than one kind, she must
define a meta-kind as the context of the definition. Though the
propagating mechanism can be implemented, the usage of Constraint
Definitions would be clumsy; the user always would have to cast
because of the lost inheritance information.

Retained Meta-Kind Features
For the time being, all features – particularly methods – that are defined by the
former language of GME constraints called MCL are retained in this
implementation, with some improvements.

The reason for this decision was that the semantic checking of OCL expressions
always requires a well-formed and valid paradigm (naturally, during the time of
meta-modeling, the paradigm is neither well-formed, nor valid). During meta-
modeling, the task of gathering all the information that the checking would require
either writing a new component that always serves the valid and well-formed part of
the paradigm or integrating the Expression Checker and Meta-Interpreter. In the
latter case, only syntax checking would be performed at meta-modeling time, and the
semantic checking only could be done after the interpretation.

In case a solution exists, all features (except for some: e.g. gme::Object::name,
gme::Object::isNull()) will be obsolete as well, because this sort of information will be
obtained by accessing kinds and meta-kinds (as predefined types of the new version
of OCL implementation) or else the features will be mapped to standard OCL
features (e.g. gme::FCO::connectedFCOs to association-ends).

Another important issue is that these features are not secure; however, their
implementation and signature are improved and modified. For example,
connectedFCOs of gme::FCO expected two arguments in the former version of the
GME constraint language: the name of the role and the name of the connection. The
result can be an empty ocl::Set even if the specific object does not have any
connection or any role specified in the arguments. These kinds of methods should be
mapped to secure feature calls, i.e. association-ends.

Generic Modeling Environment User's Manual Constraint Manager • 114

The modifications of these methods are as follows:

• The features are reorganized and are associated with specific and most
appropriate meta-kinds. For example, method refersTo() can be called
on objects whose meta-kind is gme::Reference. This was required
because MCL is not a typed language, in contrast to OCL.

• Wherever a method expected the name of a kind as an argument typed
as ocl::String, the feature now expects the kind typed as ocl::Type (i.e.
identifier) according to the new signature. With this slight modification
mis-spelled names can be filtered immediately after writing the
expression and the expression is more readable. On the other hand,
features can be overloaded as ambiguity is avoided. For example,
gme::Model::parts(role : ocl::String) vs gme::Model::parts(kind : ocl::Type).

• If a method expects the name of a kind, the kind of the kind (i.e. the
meta-kind) is specified, too. The implementation of the method checks
whether the name is the name of a kind defined in the paradigm, and
whether the kind conforms to the expected meta-kind. If these
conditions are not satisfied, the proper exception is thrown and
undefined is returned.

• The implementation of all features, before performing, checks whether
the object is null. If it is null, exception is thrown, and undefined is
returned.

The benefits of these features are:

• The cautious modeler has free rein in writing expressions, because the
features are not fully checked.

• A constraint can already be attached to different kinds without dealing
with difference and conformance, because the features are defined by
meta-kinds.

We strongly recommend that the special feature gme::FCO::attribute should not be
used. In MCL, this method returns objects with different types depending on the type
of the attribute. This feature is also not very secure; in the expression oclAsType, it
returns ocl::Any in this implementation. It is better to somehow cast the kind itself,
and use the standard access of attributes defined by OCL.

Special Features of Predefined OCL Types
In GME, there are some special features with which predefined OCL types are
extended, but they are not part of OCL specification.

These are in order:

• ocl::String::intValue() – This feature exists because of backward
compatibility, thus it is deprecated. Standard ocl::String::toInteger() must
be used instead.

• ocl::String::doubleValue() – This feature exists because of
backward compatibility, thus it is deprecated. Standard
ocl::String::toReal() must be used instead.

• ocl::String::match(ocl::String) – This method is introduced so that
regular expression can be used to test whether a string matches a

Generic Modeling Environment User's Manual Constraint Manager • 115

specific format. This feature can be used well for example to test
whether the value of a string attribute has a special format or not.

• ocl::Collection::theOnly() – This method exists because of backward
compatibility, but it is not deprecated. It returns the sole element of a
compound object. If the collection either contains more than one
element or is empty, undefined is returned.

Multiplicity
In the interpreted meta-model, the multiplicity of containments, membership of sets,
and association-ends is omitted and lost. The cardinality is forced by constraints
generated by the Meta-Interpreter.

The consequence is that all features that have multiplicity (i.e. the features
mentioned above) return ocl::Set. In GME, there is a method ocl::Collection::theOnly()
with which this problem can be solved.

Enable-Disable Constraints
This is a special feature of GME with which the user may disable constraints defined
in the paradigm.

This disabling has a limitation: constraints, which have priority one and are defined
in the meta-model or included libraries, cannot be disabled

The user interface allows the user to change this flag by kind, type and subtype, as
well as by instances. This flag can be set for objects directly or implicitly (i.e. the
value of the flag is inherited), taking advantage of type inheritance.

Constraints at Modeling Time and In Libraries
In GME, a special inheritance called type inheritance is introduced at modeling time.
To learn about more this feature, see chapter Type Inheritance.

This solution raises a question about how to specify constraints whose context is a
type, a subtype or a sole instance. The answer is the user-defined constraint, which
does not differ from the constraint defined at meta-modeling time (meta-defined
constraint) except that the user-defined constraints are stored in the registry of the
model, rather than in the paradigm.

Although the context of user-defined constraints can only be a kind, with constraint
disabling this context can be tightened into specific types or even instances.

As an expert GME user knows, libraries can be defined and attached to a designated
folder – i.e. to the RootFolder. A library will be a read-only part of the model;
therefore, all user-defined constraints are fixed and cannot be changed. This allows
the user to create libraries that force additional well-formedness or validity as well.

Types and Constraints (Expressions)
In GME all types of available constraints (equation of a constraint or a constraint
definition) contain another predefined variable called project, in addition to self.
Through project, the user can obtain all instances of a kind and attach constraint
definitions to them. The instances should be associated with the paradigm itself,
rather than with the particular kind of the paradigm.

Generic Modeling Environment User's Manual Constraint Manager • 116

Type Resolution
In GME, namespaces are used to refer to kinds, meta-kinds, predefined OCL types,
and predefined GME kinds unambiguously. If the user does not use namespace, than
the type resolution is well-defined.

The order of resolution:

• Look for a kind defined in the paradigm.

• Look for a meta-kind defined by MetaGME.

• Look for a predefined OCL type.

For example, be careful when using ocl::Set without namespace, because it is first
resolved in a meta-kind, gme::Set.

The following is a list of pre-existing namespaces:

• Predefined OCL types are in the ocl namespace.

• Predefined meta-kinds of GME are in the gme namespace.

• Kinds defined in the paradigm can be referred to unambiguously using
the namespace meta.

Invariants
In GME, only invariant constraints can be written, although a GME constraint has
further properties with which the invariant closes to post-condition constraints.

In standard OCL an invariant constraint is defined if both the type of the context and
the equation of the constraint are specified. However, a constraint is defined
completely if the user names the invariants and sets the additional properties’ values.

These properties are the following:

Event: (special interpretation of messages of OCL 2.0)

A constraint by default can be evaluated on demand. If the user associates events for
a constraint, it will be evaluated as well, when the context’s object receives such
kind of events.

With these properties (if at least one is set) an invariant constraint can be considered
as a post-condition. If the constraint has no events associated, then the constraint is
evaluated on demand only.

The events are the following:

• On close model – The user closes the model. (Model)

• On create – The user creates an object. (Object)

• On delete – The user deletes an object. (Object)

• On new child – The user creates an object in a model or folder.
(Model, Folder)

• On lost child – The user removes an object in a model or folder.
(Model, Folder)

• On move – The user moves an object. (Object)

• On derive – The user creates a subtype or an instance of a type
(Model)

Generic Modeling Environment User's Manual Constraint Manager • 117

• On connect – The user connects the fco to another. (FCO)

• On disconnect – The user disconnects the fco to another. (FCO)

• On change registry – The user modifies the object’s registry. (Object)
(Not implemented)

• On change attribute – The user changes the value of an attribute of
the fco. (FCO)

• On change property – The user changes the value of a property of the
object. (Object)

• On change association – The user changes the association of the
connection. (Connection)

• On refer – The user refers to the fco with a reference. (FCO)

• On unrefer – The user removes a reference that points to the fco.
(FCO)

• On include in set – The user includes the fco into a set. (FCO)

• On exclude from set – The user excludes the fco from a set. (FCO)

Priority: (evaluation order of constraints)

The higher priority an invariant has, the earlier it will be evaluated.

The highest priority, 1, has special meaning. When an object violates an invariant
with priority 1, a critical violation occurs. If a constraint was performed by an event,
the changes will be aborted. This prevents a model (instance of the paradigm) form
having an inconsistent state. For lower priorities the user decides whether, the
modification may be committed or aborted.

The default value is 2.

Depth: (extension of the invariant’s context)

When a modification is made and it generates an event, a constraint may be
evaluated even if the constraint is not attached to the kind whose instance generated
the event. This condition depends on the value of the Depth attribute. This attribute
applies only to Models only.

• 0 – the constraint will be evaluated if and only if the context’s object
receives events specified by the events attributes.

• 1 – the constraint will be evaluated if the context’s object and/or its
immediate children receive events specified by the events attributes.
This is the default value.

• any – the constraint will be evaluated if the context’s object and/or any
of its descendants receive events specified by the events attributes.

Constraint Definitions
In the former version of the Constraint Manager only Constraint Functions could be
defined. They were similar to Constraint Method Definitions, with the limitation that
they only could return ocl::Boolean.

In this implementation, the Constraint Function is updated to be compliant with the
Constraint Definitions specified by OCL 2.0.

The set of the attributes of the former Constraint Function is extended.

The attributes include the following:

Generic Modeling Environment User's Manual Constraint Manager • 118

• Stereotype – Stereotype of the definition, it can be either method or
attribute.

• Return type – The returned kind or meta-kind of the definition.

• Context – The context of the definition. It can be either a kind or a
meta-kind.

• Parameter list – The parameters of the method definition, separated
by a comma.

• Equation – The expression of the definition.

The definition of Constraint Definitions requires that the context, the return type and
the expression must always be defined.

Due to this extension, the Meta-Interpreter of GME had to be slightly altered in order
to better interpret the extended Constraint Functions. Of course, XML files exported
before this modification and XMP files interpreted by the former Meta-Interpreter
can still be imported and used.

These Constraint Functions will be recognized as Method Definitions with the
context of the singleton gme::Project and with ocl::Boolean as the return type. Errors
may occur, however, because these methods cannot be called in expressions as a
function, rather as a method of the predefined variable called project. Therefore, only
these slight modifications must be made manually.

Using Constraints in GME
As an expert metamodeler knows, in the paradigms there are rules that cannot be
expressed only with class diagrams. These constraints used to be written in informal
language, (i.e. annotations), and the modeler interpreted it freely, even she might
have misunderstood the semantics and/or the syntax.

In GME 6 we support a constraint language, which is compliant with OCL 1.4.
Because of this, more sophisticated rules can be written and built into the paradigms.

Constraints defined by the Paradigm
Constraints can be associated only to kinds. In order to do this, we have to switch to
the Constraints aspect in the Metamodeling Environment of GME and we may drag
& drop a new Constraint to the Model Editor.

Constraints can be connected to any kind in the paradigm. In this case the context of
the constraint will be the appropriate kind, otherwise (i.e. the constraint is stand-
alone), its context will be the singleton instance of gme::RootFolder. Constraints can
be connected to more than one kind if it expresses common rules for them.

If a constraint is associated with a base-kind, then all descendants will have that
constraint, as well.

After defining the context, the user has to Name the constraint. The names must be
unique within kinds. Thus a kind cannot have constraints inherited from the base-
kind and associated directly with the same name.

It is not required that the name include the text: constraint or any form of it.

Generic Modeling Environment User's Manual Constraint Manager • 119

If the constraint is violated, then the content of the Description will be shown, thus,
this field must be very descriptive so that the user can fix the problem.

The expression (i.e. the equation) of the constraint will be evaluated on all objects of
a kind, and it must return true of false (in case of an exception, it returns undefined).
The context can be accessed through the self variable (As we mentioned earlier, the
GME project itself is also available as project.

After the properties of the constraint are filled in, the user may enable the event-
based evaluation. If it is required, she may set the constraint to critical setting
Priority value to 1. In this case, the constraint will be evaluated when an appropriate
event is sent, and the modeler can only abort the last operation if the constraint is not
satisfied.

Constraint associated to the Compound kind in the SF paradigm.

Constraint Definitions (Functions)
In GME 6 the former Constraint Function is improved to comply with Constraint
Definitions introduced by OCL 2.0.

The two attributes of a Constraint Function called Parameter list and Definition are
retained and have the same syntax and functionality.

The expression of the Definition can already return any type not only ocl::Boolean,
but it must be the same or a descendant of the type specified in the Return type
attribute. This attribute can hold only simple and not compound types. For example:
ocl::Set(gme::FCO) cannot be written; only ocl::Set is valid.

In order to facilitate the call of a Definition, which does not have any parameters, the
Definition’s Stereotype can be set to attribute.

Generic Modeling Environment User's Manual Constraint Manager • 120

For the time being the Context is an attribute rather than an association, so it must be
supplied explicitly. The intention is that the user will be able to write more generic
Constraint Definitions supplying a GME meta-kind as the Context of the Definition.
With this solution the difficulties caused by the inheritance information loss is easily
solved, because the constraint writer can use the commonalities of different kinds
without casting objects’ type explicitly to the appropriate kinds.

It is good practice to specify the context as a meta-kind or gme::Project if a Constraint
Definition must or can be associated with more than one kind.

The context of the Definition can be accessed as self. If the Context is gme::Project
then self and project point to the same object (i.e. singleton project object)

Constraint Definitions can be called from other Definitions or Constraints, even
being recursive.

identity and cropProxy constraint definitions in the paradigm MetaGME

Syntax and semantic errors
User defined constraints and constraint definitions may have syntax and semantic
errors. Misspelled keywords, unclosed brackets, missing or superfluous elements in
OCL expression lead to syntax errors. Semantic errors can be invalid or non-existent
feature calls, variable redefinitions, wrong or invalid parameter list, or non-
conformant types and so on.

These errors are displayed immediately after the user modifies and leaves one field
of the Constraint or Definition. If it is fully defined the Syntax and Semantic Error
Dialog is shown.

Because one constraint can be connected to more than one kind, the dialog
enumerates all constraint and kind pairs. In the list violations can be sorted by
Constraint’s type, context or name.

Generic Modeling Environment User's Manual Constraint Manager • 121

Selecting an association, the text of the Constraint is shown on the left of the dialog
with all primary errors (i.e. errors that do not come from other). Choosing an error,
the line is selected in the expression window where the error is detected.

If a constraint is parsed successfully, then a semantic check is performed. That is the
reason why syntax errors are displayed first (yellow icons). If there are no syntax
errors, then semantic errors are shown (red icons).

Semantic errors in a Constraint Definition called WrongConstraint

After interpreting a paradigm when a user tries to use the interpreted meta-model
(create or open a model) all constraints and definitions are examined. If errors exist,
the appropriate constraints (definitions) will be disabled and cannot be used.
Constraints depending on a failed Definition are not available as well.

Evaluating the constraints
During modeling time the well-formed and valid constraints are used to maintain the
model’s consistency.

Constraints can be evaluated in several ways. These are the following:

1. Event-based constraints are evaluated if the appropriate event (i.e. the
event that triggers the constraint) is performed on the objects. These
constraints may be evaluated even if they are not associated with the
object, which received the event (see Depth attribute of Invariant).

2. All existing constraints defined by either a library, the model or the
paradigm can be evaluated on demand executing the File | Check |
Check All command.

3. All constraints associated to the active and opened Model or associated
to its immediate and indirect children can be evaluated on demand
executing the File | Check | Check command. Examining the children
may be excluded at the Constraint Browser dialog’s Settings page.

Generic Modeling Environment User's Manual Constraint Manager • 122

4. A specific constraint can be evaluated for all objects to which it applies
at the Constraint Browser dialog’s Constraints page.

5. For a specific object, all constraints can be evaluated at the Constraint
Browser dialog’s Kinds and Types page or executing the Constraint
| Check command of the context menu of the Model Browser.

Before interpreting a model it is highly recommended that the user execute the
Check All command because it is likely that the paradigm or a library contains pure
on-demand constraints which are evaluated only if the user would like to.

Altering the evaluation process
In GME 6 the user may change some settings to alter the evaluation process. This
can be done by opening the Constraint Manager’s main dialog (File | Display
Constraints) and by clicking on the Settings page.

Settings of the evaluation

Short-circuit evaluation
As OCL is a predicate and query language, during the “execution” of the constraints
nothing is altered in the underlying model. In some cases – for example the model is
quite huge and the evaluation would be time-consuming – logical operators and
iterators may be switched to short-circuit mode: if the result is already available and
the further operation will not modify the model, these features can return earlier.
With these options, the performance may be improved.

Generic Modeling Environment User's Manual Constraint Manager • 123

Evaluation Tracking
If this option is off, constraints’ evaluation is not debugged, and only the context and
the result (false or undefined) are shown in the Constraint Violations dialog.

This option may be turned on, if the user would like to test the paradigm (i.e.
constraints)

Termination of evaluation
With these options the user can manage when the evaluation process must terminate.

If the there were a lot of constraints and the model was too large, the Check All
command would take too mush time. In this case the user can shorten the evaluation
to concentrate on the first violations.

Depth of on-demand evaluation
If the user wants to evaluate all constraints on the currently selected model, she may
choose which constraints have to be checked. The default is that the constraints of
the model and its immediate children are executed.

Run-time exceptions and constraint violations
If constraints are evaluated they can result in true, false or undefined depending on
whether the constraint is satisfied or not, or during the execution some exceptions
were thrown.

In the two latter cases, a Violation Dialog pops up displaying the violations and/or
exceptions. The dialog has two views; in the compact view only one violation is
shown in contrast to the detailed view in which all violations are enumerated at the
left of the dialog. The user may switch between the views with the Expand/Collapse
button.

Both of the views have the close buttons at the bottom-left corner of the dialog.

• Close button is used to close the dialog simply. If the violation dialog
appeared because of an event, this button means that the user approves
the violating modifications at that time.

• Abort is enabled only if at least one event-based and critical (Priority =
1) constraint is not satisfied. In these cases Close button is disabled to
force the user so that she aborts the modification.

If the paradigm is in the testing phase it is recommended that none of the constraints
are critical in order to examine constraints simply.

Compact view
In the compact view the most important properties are shown of the current
violation.

These are the following:

• Full name – The concatenation of the context name (with namespace)
and the constraint name.

• Description – Description of the violation (i.e. the meaning of the
constraint)

Generic Modeling Environment User's Manual Constraint Manager • 124

• Variables – Variables that are defined in the constraint (it always
contains the self and the project variables)

If there are more violations at the same time, then the user can iterate over those
violations using the Previous and Next buttons.

The dialog displaying the violated or failed constraints in both compact and detailed views

Detailed View
In addition to that compact view, the detailed one displays all the information can be
gathered during the evaluation.

Here we can see all violations at the left of the dialog. The user can sort the content
similarly to the Syntax and Semantic Errors displaying dialog. The content of the
whole dialog is changing according to the selected item in the list.

At the right we can track and follow the constraint evaluation on a particular object
regarded as the context of the constraint. For the time being, in this window we can
see only those feature calls that returned false or undefined. In lots of cases this
information is enough to eliminate the unwanted errors or to find out where the
problem occurred.

Generic Modeling Environment User's Manual Constraint Manager • 125

Selecting one line in the track window, the Expression window and the list showing
the defined variables are updated according to the context of the track line.

At this time tracking of the execution of Constraint Definitions is not available.

Constraints in the model

Constraints’ types
As GME had introduced the type inheritance concept, it became essential that the
user would be able to attach constraints to types and subtypes similarly to kinds.

In GME 6 the set of the rules expressed by constraints defined in the paradigm may
be extended by constraints defined by the modeler. These constraints can be
associated to types, subtypes, even instances in a specific way.

If the modeler set the aim to create a model, which will be imported as a libarary into
other models, then the constraints defined in the imported model become library
constraints. The types of constraints are the following:

Icons for types of Constraints and Definitions

Constraint Browser
Exceuting the File | Display Constraints command, the user can browse all
constraints available in the model in the page Constraints of the Constraint
Browser. The page displays the state (i.e. not avaiable because of errors, well-
formed and valid), the type and the full name for each constraint.

Selecting the items in the list and clicking on the Check button make the user able to
evaluate specific constraint on demand.

Double-clicking on a constraint, the user is able to look at its expression and its other
attributes. If the constraint is neither a paradigm-constraint nor a library-constraint,
its definition can be changed easily with the exception of the context and the name.

Generic Modeling Environment User's Manual Constraint Manager • 126

Constraints in the model

Add and Remove constraints

Property pages for a constraint

Generic Modeling Environment User's Manual Constraint Manager • 127

With the Add and the Remove buttons the user may add and remove constraints
from the model. In the model, constraints cannot be either added or removed from
the libriaries and the paradigm. Constraint Definitions can be created only in the
paradigm.

Modeler constraints can be specified similarly to a paradigm’s constraints. The
context can be only kinds rather than types, subtypes or instances. The set of the
objects can be restricted with the constraint enabling mechanism.

Enable and disable constraints

Enable constraints – restrict the context of constraints

For each object and constraint pair the user may set a special enable flag. If the
constraint is disabled for an object, then the constraint will be evaluated on the object
only if the user checks it explicitly.

Nevertheless there are some exceptions when the enable flag cannot be changed:

• Critical constraints defined in the paradigm or in a library are always
enabled.

• Flags cannot be changed for the objects residing in a library.

The user can change these flags in the Kinds and Types page of the Constraint
Browser dialog.

The dialog displays this information in a tree whose root nodes are the kinds.
Subnodes of the kinds are types, subtypes and instances according to the type
inheritance chain. Each object and each kind have subnodes representing the
constraints.

Generic Modeling Environment User's Manual Constraint Manager • 128

In the beginning, the tree contains special icons instead of checkboxes. These icons
are for telling the user that there is no information gathered regarding the kinds.
Selecting them or clicking on the Load All button will cause the information to
become available.

Checkboxes may have different colors. The meaning of the colors are the following:

• Grey – the flag is disabled

• Cyan – the flag’s value is inherited, the value is implicit

• Black – the flag’s value is set explicitly – not inherited

The checkboxes can enable or disable the constraints in different sort of ranges
depending on what kind of nodes they are reside before.

• At kinds – enable all constraints for all objects of the kind at the same
time (not stored)

• At types, subtypes or instances – enable all constraints for the specific
object at the same time (not stored)

• At constraint subnodes of kinds – enable the specific constraint for all
objects of the specific kind.(not stored)

• At constraint subnodes of objects – enable the specific constraint for
the specific object. (stored)

It is likely that the user changes a flag for an object (e.g.: for a type) then the color of
the checkboxes of the descendant objects will change using the advantage of type
inheritance in the regisrty.

In order to facilitate the context definition the right and left buttons of the mouse can
be used:

• Left button – set the flag only for the specific node.

• Right button – set the flag for the specific node and its appropriate
subnode according to described relationships above.

Constraints in a library
Constraints residing in a library are the same as the constraints in a model, but
according to the library’s definition the constraints are read-only.

Good to know that if a library (i.e. the included model) is changed, it has to be
included again into the model after deletion or refreshed. After including the library
the model has to be closed so that its new constraints will be available for evaluating.

Generic Modeling Environment User's Manual Constraint Manager • 129

Appendix A - Database Setup

GME 6 Database Support
The GME application provides optional ODBC based database backend for storing
projects. The benefits of this feature are robustness, centralized project repository
and concurrent access. However, one should expect slower performance and
increased maintenance overhead when using OBDC based storage media.

Although we are using the generic ODBC interface, currently only Microsoft SQL
Server 7.0 or later is supported.

Server side installation
On the MS SQL server the database administrator should perform the following
steps:

1. Create a new dedicated database for the GME project (one database for
each project)

2. Create or select database users

3. Give "create" permissions to each user within this database

Client side setup
On the client machine(s) the user should set up an ODBC DSN (data source name -
description of the database connection) to the database created above. A DSN
identifies the server machine and the name of the database along with the username
and password and some communication parameters. An ODBC DSN can be stored
as a regular file (User DSN) or in the registry (System DSN). It is recommended to
create a system wide DSN:

1. Open Control Panel | Administrative Tools | Data Sources
(ODBC)

2. Select the System DSN (or User DSN) tab on the dialog box

3. Click Add.. and select the SQL Server driver
Give a name (and optionally a description) to your DSN, and specify
the SQL server insance you want to connect to. Press Next.

4. Based on the server setup you should select Windows NT or SQL
server authentication. GME was tested primarily with SQL based

Generic Modeling Environment User's Manual Appendix A - Database Setup • 130

authetication. Specify the username (and password), if SQL server
authentication is selected. Click Next.

5. If at this point you cannot continue due to some error, ask your SQL
server administrator for help

6. Set the Default database to the database containing the project. Proceed
through the next few dialog boxes by accepting the default options.
Test the data source when given the choice and complete the setup of
the DSN.

Preparing GME for multiuser access
With multiuser access it is essential to use exactly the same paradigm on each client
machine. To achieve this an .mta (binary paradigm description) file must be
generated on one of the client machines and must be distributed to all clients:

1. Start the GME application on one of the client machines

2. From the File menu select Register Paradigms

3. Click on Add from File and select the .xmp file which contains the
paradigm information. The parser will generate a file with extension
".mta" in the same directory where the .xmp file resides.

4. Distribute (copy) the generated .mta file to all client machines. On the
client machines register the distributed paradigm file using the process
above (use the .mta file instead of the .xmp now)

Using GME with the ODBC backend
When one creates or opens projects on SQL servers the only difference is that
"ODBC data" instead of "Project file" must be chosen in the proper dialog box and
the previously created DSN must be selected instead of a regular file.

GME does not provide facilities to purge ODBC projects. To delete a database
project the database on the SQL server must be emptied manually (drop all user
tables). If you do not know how to do this or you do not have the privilege to drop
these tables ask your SQL server administrator for help.

Though the database tables created by GME can be easily interpreted, it is highly
discouraged to operate on them outside of modeling environment. The schema of
these tables may change between different versions of GME. Therefore we do not
provide documentation on the internal format of these tables.

Generic Modeling Environment User's Manual Appendix A - Database Setup • 131

Appendix B – OCL and GME

OCL Language
In this section we discuss the standard OCL 1.4 structures and expression can be
used in GME. We summarize all issues which writing constraints in GME based on.

Type Conformance
OCL, as specified, is a typed language. The types that can be used in OCL are
organized in a type hierarchy. This hierarchy as well as the type inheritance and
special properties of meta-types, correspond to conformance rules describing if and
how a type conforms to another.

These rules include the following:

Common rules

• A type conforms to itself.

• A type conforms to its supertypes (direct, or indirect supertypes)

• A type conforms to its meta-type.

• A type conforms to supermeta-types of its meta-type.

Compound meta-type related, additional rules (applies to Collection, Set, Bag and
Sequence)

• A compound type conforms to another compound type, if its contained
type conforms to another’s contained type.

Record meta-type related, additional rules (applies to Tuple)

• A tuple conforms to another tuple, if its contained member types
conforms to another’s contained member types, and these members’
names are the same.

Paradigm types related, additional rules

• A type defined in a meta-model (paradigm) conforms to another type
from which it is derived. This rule is applicable if and only if
inheritance is defined for these types.

These rules are extended, because the next version of OCL will introduce the feature
to access meta-kind information.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 132

Context of a Constraint
As we mentioned earlier, an OCL constraint is always written in the context of a
specific type. In this implementation the type can be only a type defined in the
paradigm.

The context is always accessible anywhere in a constraint as a special variable called
self. This is also a reserved keyword of OCL.

A constraint can be evaluated to objects, which are instances of the type of the
context. If a constraint evaluates to false, the object violates the constraint. If a
constraint evaluates to undefined, then one or more exceptions were thrown while the
constraint was evaluating.

A constraint can be named. In some circumstances, this is a requirement rather than
an option, in order to make a distinction between constraints of a type. The
constraint’s defined name will be the concatenation of the type of the context and the
name of the constraint.

In this implementation each constraint expression has to have context declaration.
The context declaration differs from constraint type to constraint type.

Types of Constraints (Expressions)

Invariants
A constraint can be an Invariant. An invariant must be true for all instances of the
type of the context at any time. In the case of invariants, the special variable - self -
can be renamed; in this case, self is not accessible.

“context” { <contextName> “:” } <typeName> “inv” { <constraintName> } “:”
<expression>

e.g.:

context Person inv DontHaveDogs : ……

context p : Person inv : ……..

Pre-conditions
A constraint can be a Pre-condition. A pre-condition can be associated with any
behavioral feature. In order to define the context of the constraint, the user has to
specify the name, the parameters, and the returned type of the feature.

In a pre-condition, the parameters of the feature can be accessed as variables.
Although the original OCL does not allow the renaming of self in pre-conditions, this
implementation does allow it.

The names of the parameters must be unique, and cannot be either self or the name of
the context.

For the time being, this constraint type is not fully implemented, because so far it has
not been a requirement for GME and UDM.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 133

“context” { <contextName> “:” } <typeName> “::” <featureName> “(“ {
<paramName> “:” <paramType> (“;” <paramName> “:” <paramType>)* } “)” { “:”
<typeName> } “pre“ { <constraintName> } “:” <expression>

e.g.:

context Person::GetSalary(month : int) : real pre ValidMonth : ……

context p : Person::CheckOut() pre : ……..

Post-conditions
A constraint can be a Post-condition. A post-condition can be associated with any
behavioral feature. In order to define the context of the constraint, the user has to
specify the name, the parameters, and the returned type of the feature.

In a post-condition, the parameters of the feature can be accessed as variables, and
the returned value can be accessed via a special variable called result. Although the
original OCL does not allow the renaming of self in preconditions, this
implementation does allow it.

The names of the parameters must be unique, and cannot be either self, result or the
name of the context.

The special postfix operator - @pre - may only be used in a post-condition. This
feature is not implemented yet.

For the time being, this constraint type is not fully implemented, because so far it has
not been a requirement for GME and UDM.

“context” { <contextName> “:” } <typeName> “::” <featureName> “(“ {
<paramName> “:” <paramType> (“;” <paramName> “:” <paramType>)* } “)” { “:”
<typeName> } “post“ { <constraintName> } “:” <expression>

e.g.:

context Person::GetSalary(month : int) : real post ValidSalary : ……

context p : Person::CheckIn() post : ……..

Attribute Definition
This feature of OCL is included here because constraint types must be dealt with in a
uniform way. However, an Attribute Definition is not really a constraint. It can be
considered an extension of a type in the aspect of constraints.

An attribute definition is an attribute of a type that can be accessed only in OCL
constraints. It has the same properties as a well-known attribute. It always has a
name and the returned type.

The name must not conflict with other attributes definitions, attributes of the type, or
roles and names of types, which can be accessed through navigation.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 134

“context” <typeName> “::” <attributeName> “:” <typeName> “defattribute“ “:”
<expression>

e.g.:

context Person::friendNames : Set defattribute : ……

Method Definition
This feature of OCL is included here because constraint types must be dealt with in a
uniform way. However, a Method Definition is not really a constraint. It can be
considered as an extension of a type in the aspect of constraints.

A method definition is a method of a type that can be accessed only in OCL
constraints. It has the same properties as a well-known method. It always has a name
and the returned type, and it may have parameters.

The names of the parameters must be unique, and cannot be self. The name must not
conflict with other method definitions and methods of the type.

“context” <typeName> “::” <methodName> “(“ { <paramName> “:” <paramType> (
“;” <paramName> “:” <paramType>)* } “)”

{ “:” <typeName> } “defmethod“ “:” <expression>

e.g.:

context Person::getYoungestPartner() : int defmethod : ……

Common OCL Expressions
These expressions are common to every OCL of every meta-paradigm.

As OCL is a query language, it is true for all expressions that objects’ states (i.e.
values of their member variables) and not modified. It is always true that all
expressions must return a value (i.e. an object). OCL is case-sensitive.

Type casting
As OCL is a typed language, it is not allowed to simply call features of an object. A
type of the object (and of course the meta-type) defines the kinds of expressions in
which the object can participate.

In most cases, the type of the object in a specific expression is enough to write the
expression without type casting, but there are some circumstances in which it is
necessary.

An object always has dynamic and static type in an expression. The static type is
known at the time of writing the expression. The dynamic type is determined at run-
time, while the constraint is evaluating.

There are two known situations in which type casting is required:

• The static type of the object differs from the well-known (i.e. dynamic)
type of the object. To write certain expressions, the type must be
downcast. This is the case when an expression returns an object, but its
static type is the supertype of the object’s dynamic type.

• The type of the objects, overloads or overrides a feature of a supertype
in a certain way (e.g. by inheritance). To access the supertype’s
functionality, the type of the object must be up-cast.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 135

Type casting is defined by the meta-type ocl::Any. It declares the type cast operator to
be a method called oclAsType. This method returns the same object, but with the type
it obtains as an argument.

To cast one object’s type to another, the former type has to conform to the new type
(up-casting) or the new type has to conform to the former type (down-casting). When
these types cannot conform, it is a type conformance error, and an exception is
thrown, and undefined is returned.

The explicit use of oclAsType is not required, because some expressions have it
implicitly (e.g. let expressions, and iterators)

Undefined
In OCL 1.4, undefined is a special object, which cannot be written as literal in this
implementation.

During evaluation undefined can be returned if the result of a feature call is undefined
or if an exception is thrown. These two aspects of undefined must be distinguished in
the new version (i.e. undefined is the sole instance of ocl::Object, and a new type called
ocl::Error must be introduced in order to denote exceptions thrown during the
evaluation).

In this implementation undefined is considered first and foremost as an error. Thus if
a feature has to be performed on or with an object that is undfined, then the feature is
skipped and undefined is returned (for example: the user cannot perform an attribute
call on undefined,or if a method gets undefined as argument, then the method is not
called).

There are only some features in which undefined can participate in (i.e. the result is
not always undefined):

• ocl::Any::isUndefined()

• operator[=](ocl::Any , ocl::Any)

• operator[<>](ocl::Any , ocl::Any)

• operator[==](ocl::Any , ocl::Any)

• operator[!=](ocl::Any , ocl::Any)

• operator[or](ocl::Boolean , ocl::Boolean)

• operator[implies](ocl::Boolean , ocl::Boolean)

Equality and Identity
Two objects are identical if and only if they are stored in the same memory space.
Equality of two objects is defined by the objects’ types or meta-types. It is not
absolutely necessary that two objects, which are equal to each other, are identical as
well.

The ocl::Any meta-type defines an operator with which the user can test whether
objects’ identities are the same. This operator is available for all types used in OCL
expressions.

For objects with meta-type ocl::Any (practically only for undefined) identity is the
same as equality, but for any other types we have to make a distinction.

In the OCL specification, there is only one operator with which we can express an
equality check. There is no special one for identity check.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 136

As we mentioned earlier, technically the operator = of ocl::Any is for testing identity,
but in a simple way this operator can only be used for testing equality, because all
types override it with a special meaning of equality.

In some cases we have to test identity definitely, but it is not simple in standard
OCL. We have to up-cast the objects to access the functionality defined by ocl::Any.
This is why we introduced a simplification, operator ==.

Operator == (and its negation, operator !=) always tests identity. However operator =
(and its negation, operator <>) always checks equality (standard OCL).

The following are some examples which return true, assuming that there is a variable
var initialized with 5.

let var = 5 in

…..

var.oclAsType(“ocl::Any”) = var.oclAsType(“ocl::Any”) -- 1. Standard way
to test identity

var.oclAsType(“ocl::Any”) == var.oclAsType(“ocl::Any”) -- 2. Redundant,
complex, but valid expression, same as 1.

var == var -- 3. Same as 1, short and
compact form of 1.

not var != var -- 4. Meaning of operator !=

var != 5 -- 5. Because 5 is stored in
different memory space as var’s value

var = 5 -- 6. Equality of integers

not var <> 5 -- 7. Non-equality of
integers

5 != 5 -- 8. Two fives are in
different memory spaces.

During the evaluation of an OCL expression, none of the objects are altered after
they receive a value (i.e. they are initialized). This is a consequence of query
languages.

In OCL, all features of types return a different object (not identical), even if it is
possible for them to return the same object (identical).

For example, method ocl::Set::including() receives an object, adds it to the set, and
returns a set. The two sets are not identical, but the object which is included in the
new set is identical to the argument of the method, because it was not altered.

We must note here that in all features depending on identity or equality check,
equality is always applied. We will indicate explicitly if an identity check is used, or
if the identity of an object is not changed during the evaluation (i.e. a new object is
not created in memory).

Literals
For the time being, two kinds of literals exist: literals of data-types predefined by
OCL, and literals of compound types.

Because basic primitive types are well-known, their literals are discussed through
examples.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 137

“string”, “\r\n: <CR><LF>”, “” -- String literals

0.0, -1.0, 5.232, -234.232 -- Real literals (reals are represented
as 64bit long signed floating-point numbers)

0, -1, 5, 2131 -- Integer literals (integers are
represented as 64bit long signed integer numbers)

#enabled, #disabled, #unknown -- Enumeration literals (enumeration values
begins with # character)

true, false -- Boolean literals

Compound types’ literals are a bit more complex than primitive types’ literals. The
user has to write the name of the compound type followed by the list of expressions
enclosed by braces (the list can be empty). Objects returned by the expressions will
be the elements of the compound object.

In standard OCL range of object (using operator ..) can be specified. In this
implementation it is not supported yet.

Compound types are so far limited to: Collection, ocl::Collection, Set, ocl::Set, Bag,
ocl::Bag, Sequence, ocl::Sequence.

<compoundType> “{“ { <expression> (“,” <expression>)* } “}”

e.g.

Sequence{ 0, 1, 2, “23”, true }

Let expression
A Let expression performs variable declaration and initialization.

This expression has two parts. The first part declares and initializes the variable, the
second part declares where this variable is accessible. Let expression’s return type is
the same type as the second expression.

Variables in OCL can be used to make the constraint more readable or to improve
the performance of constraint evaluation. If we want to use a result of an expression
more than once, it is better to compute the result only once and store it in a variable.

Let expression may have a type declaration, as well.

“let” <variableName> { “:“ <declarationType> } “=” <expression> “in”
<expression>

e.g. in GME

let dogs = persons.connectedFCOs(“src”, “Partners”) in ………

If Then Else Expression
This expression is the well-known “if” feature of languages, with a limitation that it
always has an else branch. Otherwise if the condition is not satisfied, the result
would be unknown.

The If expression consists of three expressions:

• The condition which has to return ocl::Boolean or any of its descendants
(if they exist).

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 138

• Two expressions with the same return type (i.e. then and else branches)

If the condition evaluates to true, then only the first expression will be evaluated;
otherwise, only the second will be evaluated.

“if” <condition> “then” <expression> “else” <expression> “endif”

e.g.

if mySet -> isEmpty() then 0 else mySet -> size endif

Iterators
Although Iterator is a special feature defined by ocl::Compound meta-type, it is
discussed in this subsection because ocl::Compound is defined by OCL and not by
meta-paradigms, and because there is a special, generic iterator called iterate. Only
ocl::Collection and its descendant types have this feature.

An iterator can be considered to be a cycle, which iterates over the elements of a
compound object while it evaluates the expression obtained as an argument for each
element and returns a value accumulated during the iteration.

Iterators (may) have:

• A typed expression, which will be evaluated for each element
(mandatory).

• A return type, which is the type of the accumulated object (mandatory).
It is not necessary for this type is to match the type of the argument.

• Declarators, which are variables that refer to the current element of the
iteration process (optional).

• A declaration type, which is simply an implicit type cast (optional).

These are true only for predefined iterators discussed in a later section.

<expression> “->” <iteratorName> “(“ { <declarator> (“,” <declarator>)* {
“:” <declarationType> } } “|” <expression> “)”

e.g.

let mySet = Set { “1”, “2”, “3”, “10” } in

…

mySet -> forAll(elem1, elem2 : int | elem1 <> elem2)

mySet -> one(size = 2)

Here we discuss only the generic iterator of OCL called iterate.

Iterate always has a variable that is regarded as the accumulator of the iteration. The
iterator’s return type is the type of the accumulator. The accumulator is always
initialized. The expression has to include the accumulator variable so that the
iteration will be meaningful (but it is not required). Iterate may have exactly one
declarator.

Iterate is the foundation of all predefined iterator.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 139

<expression> “->” “iterate” “(“ { <declarator> { “:” <declarationType> } “;”
} <accumulator> { “:” <accumulatorType> } “=” <expression> “|” <expression>
“)”

e.g.

let mySet = Set { “1”, “2”, “3”, “10” } in

-- Expressing the functionality of “exists” predefined iterator

mySet -> exists(i | i.size = 2)

mySet -> iterate(i ; accu = false | accu or i.size = 2)

-- Expressing the functionality of “isUnique” predefined iterator

mySet -> isUnique(i | i)

mySet -> forAll(i1, i2 | i1 != i2 implies i1 <> i2)

mySet -> iterate(i1 ; accu1 = true | accu1 and mySet -> iterate(i2 ; accu2
= true | accu2 and (i1 != i2 implies i1 <> i2)))

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 140

Type Related Expressions

Operators
In OCL, there are a bunch of operators defined by predefined types.

In both OCL 1.4 and OCL 2.0, logical operators are not defined completely, as the
specification does not define precedence between these operators. This small lack
would make writing OCL expressions more difficult, because the user would have to
use parenthesis even if it was not necessary. In this implementation we define the
precedence and the associative rules of operators as they are defined in well-known
programming languages.

Operators can be overloaded and defined for types of paradigms as well. This
extension is adopted from the C++ language. The overridden operators can be
accessed by applying the oclAsType method of ocl::Any. Exceptions to this rule are the
primary operators (first row of the table below).

The precedence (from the highest to lowest) and associativity are shown in the
following table.

Operators Associativity
(), @pre, ., -> Left to right
- (sign) Right to left
*, /, div, mod, % Left to right
+, - Left to right
<, <=, >, >=, =, <>, ==, != Left to right
Not Right to left
and, && Left to right
Xor Left to right
or, || Left to right
Implies, => Right to left

In this implementation, we allow short-circuit logical operators (&&, ||, =>). They can
be useful when the user wants to alter the process of the evaluation.

<expression> <binaryOperator> <expression>

<unaryOperator> <expression>

e.g.

“This forms” + “ a string”

not person.isRetired()

Functions
Although OCL is based on the object-oriented concept, functions can be defined to
make OCL more convenient.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 141

There are two examples for this:

• We write max(a, b) instead of a.max(b). Of course, both forms of these
calls are available.

• In extensions of OCL, it is good practice to somehow separate the
extending features from the standard ones. This issue can be solved
very well with functions, though it is not necessary.

Functions may have arguments, which are evaluated before calling the function.
Arguments may be optional, as in many programming languages. Optional
arguments can be followed only by other optional arguments. Arguments omitted in
a call are considered to be undefined.

There are some predefined functions in OCL, in particularly for ocl::Real and
ocl::Integer.

<functionName> “(“ { <expression> (“,” <expression>)* } “)”

e.g.

floor(3.14)

Attributes
The simplest features of a type are attributes.

Attributes are defined by the type or by the meta-type. It is also possible that an
attribute is not defined by either type or meta-type, but by a constraint attribute
definition.

Attributes are not typical of predefined types; there is only one, called size.

In OCL, depending on the type of the elements, a special feature can be applied to
compound objects which looks like an attribute call. This feature is a shortcut for the
special usage of a predefined iterator (collect). It is introduced in OCL because of
convenience.

We describe it with an example below. These attributes exist if and only if the object
contained by the compound object has them.

<expression> (“.“ | “->”) <attributeName>

-- Assuming that there is a Set mySet which consists objects with type Person
(Person has an attribute, called age)

-- The result is the same in both cases (a Bag consisting integers - age of
persons)

mySet -> collect(person : Person | person.name)

mySet -> name

In some circumstances, attributes of the compound object and the contained object
are ambiguous. Then the decision is made (i.e. which attribute is called) depending
on the member selection operator.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 142

Methods
Methods are the most generic feature of a type.

A method may have arguments, which are evaluated before calling the method on an
object. Arguments may be optional as in many programming languages. Optional
arguments can be followed only bt other optional arguments. Arguments omitted in a
call are considered to be undefined.

Methods are defined by the type or by the meta-type. Only those methods, which do
not alter the state of the object can be used in OCL It is also possible that a method is
not defined by either type or meta-type, but by a constraint method definition.

If a method has only one argument and belongs to a compound object, then it is
possible that it will be ambiguous with a predefined iterator (which does not have
any declarators). In this case the member selection operator will be used to call either
the method or the iterator.

<expression> (“.” | “->”) <methodName> “(“ { <expression> (“,”
<expression>)* } “)”

e.g.

object.isUndefined()

Associations
Associations are usually defined by the types of a paradigm. In OCL associations
appear as association-ends.

The result of navigation over an association depends on the multiplicity of another
association-end and on the ordered stereotype of the association.

If the multiplicity is 0..1 or 1, the result is one object. Otherwise the result is an
ocl::Sequence or an ocl::Set depending on whether the association is ordered or not.

The user can navigate from an object to the other side of the association using the
role of the association-end. If the role is missing, then the name of the type at the
association-end, starting with a lowercase character, is used as role.

In standard OCL, if a navigation (using role) is ambiguous, then the association-end
can be accessed by the name of the type at the association-end. If the names of the
types are ambiguous as well, then this navigation is not available.

From an association-end, the association class(es) can be accessed using the name of
the association class, starting with a lowercase character. If the association is
recursive, then the role of the starting point (i.e. association-end) has to follow the
name of the association class in brackets. If the roles are ambiguous, then the
association class is not accessible.

To navigate from the association class to association-end, the role of the association-
end has to be used. If it is ambiguous, then the name of the type at the association-
end must be used. The ambiguity rules are the same as before. Navigating from the
association class always results in one object (a consequence of the definition of the
association class).

Composition is considered to be a special association, but there is no difference in
OCL.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 143

In extensions of OCL, it is likely that features defined by meta-types are mapped to
special associations with special roles.

The ambiguity rules can be eased, by extensions of OCL, but it may lead to errors in
those implementations, because they follow the strict rules of OCL.

<expression> “.” <roleName>

<expression> “.” <typeName> { “[“ <roleName> “]” }

Here are some examples to facilitate the understanding of navigation over
associations.

Example for associations..

Regarding these parts of a paradigm, the following OCL expression can be written:

-- Assuming that “b” is a Box, “bc” is a BoxContainment

-- If Box had further association, which has “elements” or “container” roles,
then these roles could not be used because of ambiguity.

-- Cannot be used in any cases because of recursive containment.

 b.box

-- Returns in ocl::Set(Box). If “elements” was missing, that association-
end would not be accessible from Box.

 b.elements

-- Returns in Box. If “container” was missing, that association-end would not
be accessible from Box.

 b.container

-- Cannot be used in any cases because of recursive containment.

 b.boxContainment

-- Returns in ocl::Set(BoxContainment). If “container” was missing, that
association-class would not be accessible from Box as container.

 b.boxContainment[container]

-- Returns in BoxContainment. If “elements” was missing, that association-
class would not be accessible from Box as element.

 b.boxContainment[elements]

-- Cannot be used in any cases because of recursive containment.

 bc.box

-- Returns in Box. If “elements” was missing, that association-end would not
be accessible from BoxContainment.

 bc.elements

-- Returns in Box. If “container” was missing, that association-end would not
be accessible from BoxContainment.

 bc.container

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 144

-- Assuming that “p” is a Person, “d” is a Dog, “hd” is a HasDog

-- If Person, Dog, HasDog had further association, which has “owner” or
“dogs” roles, then these roles could not be used because of ambiguity.

-- If these classes have further association between them, then the name of
the appropriate classes cannot be used as role.

-- If role exists, then the role has to be used to navigate, otherwise the
name of class has to be used.

-- Returns in ocl::Set(Dog).

 p.dogs

 p.dog

-- Returns in Person.

 d.owner

 d.person

-- Returns in ocl::Set(HasDog).

 p.hasDog

-- Returns in HasDog.

 d.hasDog

-- Returns in Dog.

 hd.dogs

 hd.dog

-- Returns in Person.

 hd.owner

 hd.person

Resolution Rules

Implicit Variables
In standard OCL, implicit variables are introduced. These variables are similar to this
in C++ or Java, thus they can be omitted to prevent writing long expressions.

The variable of the context – in many cases: self – is always implicit. Other implicit
variables are created by iterators, which do not have any declarators.

Because of this property of the language the resolution of features (i.e. expressions)
gets more complicated.

In an expression all available implicit variables are marked and stored in a sequence.
If an expression has to be regarded as a feature of a type (i.e. attribute, association-
end, method, iterator), then all implicit variables are examined to determine which
variable the feature belongs to. This examination starts at the end of the sequence
and goes to the beginning (i.e. the variable declared last is examined first). If a
feature is resolved (even if it is ambiguous), then resolution is stopped.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 145

-- Assuming that “Person” and “Dog” are defined by the paradigm. They have an
association called “HasDog” with roles “owner” and “dogs”.

-- Both classes have an attribute called “age”. Person has an attribute
called “gender”.

-- First “age” is resolved as “self.age”, because there is only one implicit
variable called “self”.

-- “dogs” is resolved as “self.dogs”, because there is only one implicit
variable called “self”.

-- Iterator called “forAll” creates a new implicit variable. We refers to
that as “iter1”. These variables are not accessible in the expression
directly.

-- “gender” is resolved “self.gender”, because “iter1” which is a Dog, does
not have any feature called “gender”.

-- Second and third “age” is resolved as “iter1.age”, because “iter1” is
defined latter than “self”, i.e. the examination started with “iter1”.

-- “owner” is resolved as if it had been written “iter1.owner” where iter1 is
an implicit declarator created by the iterator

 context Person inv :

 age < 4 implies dogs -> forAll(if gender = #male then age < 1 else age <
0.5 endif)

-- Assuming that “Box” is defined by the paradigm. Box has a containment with
roles “container” and “elements”.

-- Box has a query method called “includes” with one argument with type Box.

-- The example does not make sense, it demonstrates the resolution only.

-- First “elements” is resolved as “self.elements”, because there is only one
implicit variable called “self”.

-- Iterator called “collect” creates a new variable. We refers to that as
“iter1”. These variables are not accessible in the expression directly.

-- Second “elements” is resolved as “iter1.elements”, because “iter1”
precedes “self” during the resolution, and it is a Box.

-- Type of “boxes” will be ocl::Bag(ocl::Set(Box)).

-- In the third line “boxes” and “self” are not subject of resolution because
they are known variables.

-- Iterator called “forAll” creates a new implicit variable. We refers to
that as “iter1”. Former “iter1” exists in the context of “collect” only.

-- First “includes” resolved as “iter1.includes(ocl::Any)”, because type of
“iter1” is ocl::Set(Box), and ocl::Set has a method called “includes”.

-- Iterator called “exists” creates a new implicit variable. We refers to
that as “iter1”. Former “iter1” exists in the context of “forAll” only.

-- “one” is resolved as “iter1.one(ocl::Boolean), because type of “iter1”
is ocl::Set(Box), and ocl::Set has an iterator called “one”.

-- The resolved iterator called “one” creates a new implicit variable. We
refers to that as “iter2”.

-- Second “includes” resolved as “iter2.includes(Box)”, because “iter2”
precedes “iter1” and the type of “iter2” is Box.

-- “size” is resolved as “iter1.size”, because the type of “iter2” (Box) does
not have any feature called “size”, but “iter1”.

 context Box inv :

 let boxes = self.elements -> collect(iter1.elements) in

 boxes -> forAll(not includes(self)) and boxes -> exists(one(
includes(self) or size = 0))

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 146

Expression Resolution
In an OCL expression it is likely that a text can be resolved differently depending on
the context (e.g. declared (implicit) variables, defined types, existing features of
types, etc.).

The rules of the resolution are described below. These differ for different sort of
texts and expressions.

In the description, we assume that the paradigm is well-formed and valid.

Resolving a text which looks like an identifier:

Check whether a type exists whose name is <id>. If there is such a type,
resolution is stopped.

Check whether there is a variable called <id>. If there is such a variable,
resolution is stopped.

Check whether an implicit object (implicit variable) has features which can
look like <id>.

• If an implicit object has exactly one feature, then resolution is stopped.

• If the object has more features, then resolution is stopped, and an
exception is thrown because of ambiguity caused by features with the
same names.

Resolution ends and an exception is thrown because <id> cannot be
resolved.

Resolving a text which looks like a function:

Check whether there is a function matching <function>. If there is such a
function, resolution is stopped.

Check whether an implicit object (implicit variable) has features which can
look like <function>.

• If an implicit object has exactly one feature, then resolution is stopped.

• If the object has more features, then resolution is stopped, and an
exception is thrown because of ambiguity caused by features with the
same signatures.

Resolution ends and an exception is thrown because <function> cannot be
resolved.

Resolving an expression which looks like an attribute call:

Check whether the object has an attribute called <attribute>.

Check whether the object has access to an association-end whose role (or
type considered as role) looks like <attribute>.

If the object is compound, check whether the contained objects have an
attribute called <attribute>.

If the object comes from an implicit variable:

• If exactly one feature is found, resolution is stopped.

• If more features are found, then resolution is stopped, and an exception
is thrown because there are more features which can be accessed in the
same way.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 147

• Resolution ends and an exception is thrown because <attribute> cannot
be resolved.

If the object comes from an expression (i.e. member selection operator is
used)

• If exactly one feature is found, resolution is stopped.

• If two attributes are found (i.e. an attribute of the compound object and
an attribute of the contained objects), then resolution is stopped. If the
member selection operator is “.”, then the compound object’s attribute
is resolved, otherwise the other attribute is resolved.

• If an attribute and an association-end are found (in this case the object
is not compound, because it cannot have associations), then resolution
is stopped and an exception is thrown because of ambiguity.

• Resolution ends and an exception is thrown because <attribute> cannot
be resolved.

Resolving an expression which looks like a method call:

Check whether the object has a method which can be called as <method>.

If the object is compound, check whether the object has an iterator which
can be called as <method>.

If the object comes from an implicit variable:

• If exactly one feature is found, the resolution is stopped.

• If more features are found, then the resolution is stopped, and an
exception is thrown because there are more features which can be
accessed in the same way.

• Resolution ends and an exception is thrown because <method> cannot
be resolved.

If the object comes from an expression (i.e. member selection operator is
used)

• If exactly one feature is found, the resolution is stopped.

• If a method and an iterator are found (in this case the object is
compound, because only compound objects can have iterators), then the
resolution is stopped. If the member selection operator is “.”, then the
method is resolved, otherwise the iterator is resolved.

Resolution ends and an exception is thrown because <method> cannot be
resolved.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 148

Predefined OCL Types
For the time being, ocl::Any is considered to be a type, and further meta-types are not
defined. In the next version these meta-types will be accessible as well as meta-kind
information.

The types enumerated below are accessible in all OCL expressions.

ocl::Any
The type ocl::Any is the supertype of all types used in OCL expressions. Features
associated with ocl::Any can be used for all types.

This type has only one instance, which is undefined.

Aliases, Supertypes
This type can also be accessed as Any.

Operators

operator[==](any1 : ocl::Any , any2 : ocl::Any) : ocl::Boolean

operator[=](any1 : ocl::Any , any2 : ocl::Any) : ocl::Boolean

Returns true if any1 is the same as any2. This equality means identity. any1 or any2
may be undefined. If only one of them is undefined, then the result is false; if both of
them are undefined, the result is true.

operator[!=](any1 : ocl::Any , any2 : ocl::Any) : ocl::Boolean

operator[<>](any1 : ocl::Any , any2 : ocl::Any) : ocl::Boolean

Returns true if any1 is not the same as any2. This equality means identity. any1 or
any2 may be undefined. If only one of them is undefined, then the result is true; if both
of them are undefined, the result is false.

Methods

ocl::Any::oclIsTypeOf(type : ocl::Type) : ocl::Boolean

Returns true if any is an instance of type.

type can be a simple name, but not a compound name. So far this method cannot be
used to check type conformity, “ocl::Set(ocl::Any)” as argument is invalid, only
“ocl::Set” is valid. If the specified type is invalid or if there is no type having this
name, the method throws an exception and returns undefined.

ocl::Any::oclIsKindOf(type : ocl::Type) : ocl::Boolean

Returns true if any is an instance of type or if any descendants of type. For further
information, see ocl::Any::oclIsTypeOf().

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 149

ocl::Any::oclAsType(type : ocl::Type)

This is actually a static typecast operator. It returns the same object with type (i.e. it
does not create a new object, the result is identical to the object itself).

The object’s type has to conform to the type, or vice-versa. This method can be used
to access overridden and overloaded features defined by ascendants of a type (up-
cast), or it can be used for the well-known down-cast.

type can be a simple name, but a compound name. So far this method cannot be used
to check type conformity, “ocl::Set(ocl::Any)” as an argument is invalid, only “ocl::Set”
is valid. If the specified type is invalid or if there is no type having this name, the
method throws an exception and returns undefined.

 ocl::Any::isUndefined() : ocl::Boolean

Returns true if the object is undefined. This method can be used to test whether an
object is undefined or not, and to handle exceptions thrown by an OCL expression.

ocl::String
The type ocl::String represents ASCII strings, as specified in OCL.

Aliases, Supertypes
This type can be accessed as string. Its supertype is ocl::Any.

Operators

operator[=](string1 : ocl::String , string2 : ocl::String) : ocl::Boolean

Returns true if string1 is the same character sequence as string2.

operator[<>](string1 : ocl::String , string2 : ocl::String) :
ocl::Boolean

Returns true if string1 is not the same character sequence as string2.

operator[+](string1 : ocl::String , string2 : ocl::String) : ocl::String

Returns a string, which is the concatenation of string1 and string2.

operator[<](string1 : ocl::String , string2 : ocl::String) : ocl::Boolean

Returns true if string1 is ahead of string2 in lexicographical ordering.

operator[<=](string1 : ocl::String , string2 : ocl::String) :
ocl::Boolean

Returns true if string1 is ahead of or equal to string2 in lexicographical ordering.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 150

operator[>](string1 : ocl::String , string2 : ocl::String) : ocl::Boolean

Returns true if string2 is ahead of string1 in lexicographical ordering.

operator[>=](string1 : ocl::String , string2 : ocl::String) :
ocl::Boolean

Returns true if string2 is ahead of or equal to string1 in lexicographical ordering.

Attributes

ocl::String::size : ocl::Integer

Returns the length of the string.

Methods

ocl::String::concat(string : ocl::String) : ocl::String

Returns a string, which is the concatenation of this and string. This is the same as the
operator +.

ocl::String::toUpper() : ocl::String

Returns a string containing only uppercase characters.

ocl::String::toLower() : ocl::String

Returns a string containing only lowercase characters.

ocl::String::substring(start : ocl::Integer {, length : ocl::Integer }) :
ocl::String

Returns the sub-string of this beginning at start and having a specified length. If length
is not specified, the substring continues to the end of this. If length is zero or negative,
an empty string is returned. The first position is 0. The result is undefined and an
exception is thrown if lower is less than 0.

ocl::String::trim() : ocl::String

Returns a string that neither starts nr ends with white-space characters. “\t”, “ “, “\r”, “\t”
and characters “\u0000” to “\u0020” are considered to be white-space.

ocl::String::toReal() : ocl::Real

Converts the string to ocl::Real. If the conversion cannot be performed, then an
exception is thrown and the method returns undefined. The method cannot convert
strings representing real numbers, but an exponent.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 151

ocl::String::toInteger() : ocl::Integer

Converts the string to ocl::Integer. If the conversion cannot be performed, then an
exception is thrown and the method returns undefined. The method cannot convert
strings representing integer numbers, but an exponent.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 152

ocl::Enumeration
The type ocl::Enumeration represents types with a discrete and finite value domain.

Aliases, Supertypes
This type can be accessed as enum. Its supertype is ocl::Any.

Operators

operator[=](enum1 : ocl::Enumeration , enum2 : ocl::Enumeration) :
ocl::Boolean

Returns true if enum1 is the same value as enum2.

operator[<>](enum1 : ocl::Enumeration , enum2 : ocl::Enumeration) :
ocl::Boolean

Returns true if enum1 is not the same value as enum2.

ocl::Boolean
The type ocl::Boolean represents the logical type of OCL.

Aliases, Supertypes
This type can be accessed as bool. Its supertype is ocl::Any.

Operators

operator[=](bool1 : ocl::Boolean , bool2 : ocl::Boolean) : ocl::Boolean

Returns true if bool1 equals to bool2.

operator[<>](bool1 : ocl::Boolean , bool2 : ocl::Boolean) : ocl::Boolean

Returns true if bool1 does not equal to bool2.

operator[and](bool1 : ocl::Boolean , enum2 : ocl::Boolean) : ocl::Boolean

operator[&&](bool1 : ocl::Boolean , bool2 : ocl::Boolean) : ocl::Boolean

Returns true if bool1 and bool2 are true. Returns undefined if bool1 or bool2 are
undefined. Operator && is a short-circuit operator. If bool1 is false or undefined, bool2
will not be evaluated.

operator[or](bool1 : ocl::Boolean , enum2 : ocl::Boolean) : ocl::Boolean

operator[||](bool1 : ocl::Boolean , bool2 : ocl::Boolean) : ocl::Boolean

Returns true if bool1 or bool2 are true. Returns undefined if bool1 and bool2 are
undefined. Operator || is a short-circuit operator. If bool1 is true, bool2 will not be
evaluated.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 153

operator[implies](bool1 : ocl::Boolean , enum2 : ocl::Boolean) :
ocl::Boolean

operator[=>](bool1 : ocl::Boolean , bool2 : ocl::Boolean) : ocl::Boolean

Returns true if bool1 is false or if both operands are true. Returns undefined if bool1 or
bool2 are undefined. Operator => is a short-circuit operator. If bool1 is false or
undefined, bool2 will not be evaluated.

operator[not](bool : ocl::Boolean) : ocl::Boolean

Returns true if bool is false. Returns undefined if bool is undefined.

ocl::Real
The type ocl::Real represents the mathematical concept of real.

Aliases, Supertypes
This type can be accessed as real or double. Its supertype is ocl::Any.

Operators

operator[=](real1 : ocl::Real , real2 : ocl::Real) : ocl::Boolean

Returns true if real1 is equal to real2.

operator[<>](real1 : ocl::Real , real2 : ocl::Real) : ocl::Boolean

Returns true if real1 is not equal to real2.

operator[<](real1 : ocl::Real , real2 : ocl::Real) : ocl::Boolean

Returns true if real1 is less than real2.

operator[<=](real1 : ocl::Real , real2 : ocl::Real) : ocl::Boolean

Returns true if real1 is less than or equal to real2.

operator[>](real1 : ocl::Real , real2 : ocl::Real) : ocl::Boolean

Returns true if real1 is greater than real2.

operator[>=](real1 : ocl::Real , real2 : ocl::Real) : ocl::Boolean

Returns true if real1 is greater than or equal to real2.

operator[-](real : ocl::Real) : ocl::Real

Returns a real which is the opposite of real, or 0.0 if real is 0.0.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 154

operator[+](real1 : ocl::Real , real2 : ocl::Real) : ocl::Real

Returns a real which is the addition of real1 and real2.

operator[-](real1 : ocl::Real , real2 : ocl::Real) : ocl::Real

Returns a real which is the subtraction of real1 and real2.

operator[*](real1 : ocl::Real , real2 : ocl::Real) : ocl::Real

Returns a real which is the multiplication of real1 and real2.

operator[/](real1 : ocl::Real , real2 : ocl::Real) : ocl::Real

Returns real1 divided by real2.

Functions

abs(real : ocl::Real) : ocl::Real

Return the absolute value of real.

floor(real : ocl::Real) : ocl::Integer

Returns the largest integer which is less than or equal to real.

round(real : ocl::Real) : ocl::Integer

Returns the closest integer to real. If there are two of them, then it returns the largest
one.

max(real1 : ocl::Real , real2 : ocl::Real) : ocl::Real

Returns the maximum of real1 and real2.

min(real1 : ocl::Real , real2 : ocl::Real) : ocl::Real

Returns the minimum of real1 and real2.

Methods

ocl::Real::abs() : ocl::Real

Returns the absolute value of this.

ocl::Real::floor() : ocl::Integer

Returns the largest integer which is less than or equal to this.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 155

ocl::Real::round() : ocl::Integer

Returns the closest integer to this. If there are two of them, then it returns the largest
one.

ocl::Real::max(real : ocl::Real) : ocl::Real

Returns the maximum of this and real.

ocl::Real::min(real : ocl::Real) : ocl::Real

Returns the minimum of this and real.

ocl::Integer
The type ocl::Integer represents the mathematical concept of integer.

Aliases, Supertypes
This type can be accessed as int or long. Its supertype is ocl::Real.

Operators

operator[=](int1 : ocl::Integer , int2 : ocl::Integer) : ocl::Boolean

Returns true if int1 is equal to int2.

operator[<>](int1 : ocl::Integer , int2 : ocl::Integer) : ocl::Boolean

Returns true if int1 is not equal to int2.

operator[<](int1 : ocl::Integer , int2 : ocl::Integer) : ocl::Boolean

Returns true if int1 is less than int2.

operator[<=](int1 : ocl::Integer , int2 : ocl::Integer) : ocl::Boolean

Returns true if int1 is less than or equal to int2.

operator[>](int1 : ocl::Integer , int2 : ocl::Integer) : ocl::Boolean

Returns true if int1 is greater than int2.

operator[>=](int1 : ocl::Integer , int2 : ocl::Integer) : ocl::Boolean

Returns true if int1 is greater than or equal to int2.

operator[-](int : ocl::Integer) : ocl::Integer

Returns an integer which is the opposite of int, or 0 if int is 0.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 156

operator[+](int1 : ocl::Integer , int2 : ocl::Integer) : ocl::Integer

Returns an integer which is the addition of int1 and int2.

operator[-](int1 : ocl::Integer , int2 : ocl::Integer) : ocl::Integer

Returns an integer which is the subtraction of int1 and int2.

operator[*](int1 : ocl::Integer , int2 : ocl::Integer) : ocl::Integer

Returns an integer which is the multiplication of int1 and int2.

operator[div](int1 : ocl::Integer , int2 : ocl::Integer) : ocl::Integer

Returns the number of times that int2 fits completely within int1.

operator[mod](int1 : ocl::Integer , int2 : ocl::Integer) : ocl::Integer

Returns the modulo of int1 and int2.

Functions

abs(int : ocl::Integer) : ocl::Integer

Returns the absolute value of int.

max(int1 : ocl::Integer , int2 : ocl::Integer) : ocl::Integer

Returns the maximum of int1 and int2.

min(int1 : ocl::Integer , int2 : ocl::Integer) : ocl::Integer

Returns the minimum of int1 and int2.

Methods

ocl::Integer::abs() : ocl::Integer

Returns the absolute value of this.
ocl::Integer::max(int : ocl::Integer) : ocl::Integer

Returns the maximum of this and int.
ocl::Integer::min(int : ocl::Integer) : ocl::Integer

Returns the minimum of this and int.

ocl::Type
The type ocl::Type represents the types and the meta-types used in an OCL
expression. For the time being, this type does not have features (e.g. enumerating the
attribute of the type), but this type will be the foundation of obtaining meta-kind

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 157

information in OCL. At the moment, it is used only to refer to types, and meta-types
with strings.

Aliases, Supertypes
This type can be accessed as Type. Its supertype is ocl::Any.

Operators

operator[=](type1 : ocl::Type , type2 : ocl::Type) : ocl::Boolean

Returns true if type1 is equal to type2.

operator[<>](type1 : ocl::Type , type2 : ocl::Type) : ocl::Boolean

Returns true if type1 is not equal to type2.

ocl::Collection
The type ocl::Collection represents the supertype of ocl::Set, ocl::Sequence and ocl::Bag.

Aliases, Supertypes
This type can be accessed as Collection. Its supertype is ocl::Any.

Attributes

ocl::Collection::size : ocl::Integer

Returns the number of elements in the collection.

Methods
There are methods which depend on the equality. In these methods, equality is used
rather than identity.

Some methods return different types depending on the context. For example, if the
user includes a real in a collection containing integers, then the method returns a
collection of real numbers, because the common ascendant type of ocl::Real and
ocl::Integer is ocl::Real. This effect comes from OCL 1.4 inconsistency. In OCL 2.0,
this aspect of collections is better defined.

ocl::Collection::isEmpty() : ocl::Boolean

Returns true if the collection does not contain any elements.

ocl::Collection::notEmpty() : ocl::Boolean

Returns true if the collection contains at least one element.

ocl::Collection::includes(any : ocl::Any) : ocl::Boolean

Returns true if the collection contains any.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 158

ocl::Collection::excludes(any : ocl::Any) : ocl::Boolean

Returns true if the collection does not contain any.

ocl::Collection::count(any : ocl::Any) : ocl::Integer

Returns the number of times that any occurs in the collection.

ocl::Collection::includesAll(collection : ocl::Collection) : ocl::Boolean

Returns true if the collection contains all elements of collection.

ocl::Collection::excludesAll(collection : ocl::Collection) : ocl::Boolean

Returns true if the collection does not contain any elements of collection.

ocl::Collection::sum() : <innerType>

This method is not implemented yet. It returns the sum of all elements of the
collection. Operator + must be defined between each element.

ocl::Collection::asSet() : ocl::Set

Returns a set which contains the same elements as the collection, without
multiplicity. If the collection is an instance of ocl::Set, then the method returns the set
itself without creating a new set.

ocl::Collection::asSequence() : ocl::Sequence

Returns a sequence which contains the same elements as the collection. The order of
the elements in the returned sequence is indefinite. If the collection is an instance of
ocl::Sequence, then the method returns the sequence itself without creating a new
sequence.

ocl::Collection::asBag() : ocl::Bag

Returns a bag which contains the same elements as the collection. If the collection is
an instance of ocl::Bag, then the method returns the bag itself without creating a new
bag.

Iterators

ocl::Collection::exists(boolExpr : ocl::Boolean) : ocl::Boolean

Returns true if boolExpr evaluates to true for at least one element of the collection.
Returns undefined if boolExpr evaluates to undefined for all elements of the collection.
If the collection is empty, it returns false.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 159

ocl::Collection::forAll(boolExpr : ocl::Boolean) : ocl::Boolean

Returns true if boolExpr evaluates to true for all element of the collection. Returns
undefined if boolExpr evaluates to undefined for at least one element of the collection.
If the collection is empty, it returns true.

ocl::Collection::isUnique(anyExpr : ocl::Any) : ocl::Boolean

Returns true if anyExpr evaluates to a different value for each element of the
collection.

ocl::Collection::any(boolExpr : ocl::Boolean) : <innerType>

Returns any element of the collection for which boolExpr evaluates to true. If there is
more than one element than one in the collection for which the condition is fulfilled,
then one of them will be returned. If there are no elements, then undefined is returned.

ocl::Collection::one(boolExpr : ocl::Boolean) : ocl::Boolean

Returns true if the collection contains exactly one element for which boolExpr
evaluates to true.

ocl::Collection::sortedBy(anyExpr : ocl::Any) : ocl::Sequence

This iterator is not implemented yet. OCL 1.4 specification has mistyped information
about this iterator. It returns a sequence which contains all elements of the collection,
where the order of the elements is determined by the value returned by anyExpr for
the element.

ocl::Set
The type ocl::Set represents the mathematical concept of set.

Aliases, Supertypes
This type can be accessed as Set. Its supertype is ocl::Collection.

Operators

operator[=](set1 : ocl::Set , set2 : ocl::Set) : ocl::Boolean

Returns true if the size of set1 and set2 are the same, and set1 contains all elements of
set2, and set2 contains all elements of set1.

operator[<>](set1 : ocl::Set , set2 : ocl::Set) : ocl::Boolean

Returns true if the size of set1 and set2 are not the same, or set1 contains at least one
element that set2 does not, or set1 contains at least one element that set2 does not.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 160

operator[+](set1 : ocl::Set , set2 : ocl::Set) : ocl::Set

operator[+](set : ocl::Set , bag : ocl::Bag) : ocl::Bag

Returns the union of set1 and set2, or set and bag.

operator[-](set : ocl::Set , collection : ocl::Collection) : ocl::Set

Returns a set, which contains all elements that are contained in set but not in
collection.

operator[*](set1 : ocl::Set , set2 : ocl::Set) : ocl::Set

operator[*](set : ocl::Set , bag : ocl::Bag) : ocl::Set

Returns the intersection of set1 and set2, or set and bag.

operator[%](set1 : ocl::Set , set2 : ocl::Set) : ocl::Set

Returns a set which contains all elements that are contained by only set1 or set2.

Methods

ocl::Set::union(set : ocl::Set) : ocl::Set

ocl::Set::union(bag : ocl::Bag) : ocl::Bag

Returns the union of the set and set or bag.

 ocl::Set::subtract(collection : ocl::Collection) : ocl::Set

Returns a set which contains all elements that that are contained in set but not in
collection.

ocl::Set::intersection(set : ocl::Set) : ocl::Set

ocl::Set::intersection(bag : ocl::Bag) : ocl::Set

Returns the intersection of the set and set or bag.

ocl::Set::symmetricDifference(set : ocl::Set) : ocl::Set

Returns a set which contains all elements that are contained by only the set or set.

ocl::Set::including(any : ocl::Any) : ocl::Set

Returns a set containing any.

ocl::Set::excluding(any : ocl::Any) : ocl::Set

Returns a set not containing any.

Iterators

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 161

ocl::Set::select(boolExpr : ocl::Boolean) : ocl::Set

Returns a sub-set of the set containing all elements for which boolExpr evaluated to
true.

ocl::Set::reject(boolExpr : ocl::Boolean) : ocl::Set

Returns a sub-set of the set containing all elements for which boolExpr evaluated to
false.

ocl::Set::collect(anyExpr : ocl::Any) : ocl::Bag

Returns a bag containing values which are returned by anyExpr applied to each
element of the set.

ocl::Bag
The type ocl::Bag represents the mathematical concept of multi-set (set containing
elements multiple times).

Aliases, Supertypes
This type can be accessed as Bag. Its supertype is ocl::Collection.

Operators

operator[=](bag1 : ocl::Bag , bag2 : ocl::Bag) : ocl::Boolean

Returns true if the size of bag1 and bag2 are the same, and bag1 contains all elements
of bag2 with the same times, and bag2 contains all elements of bag1 with the same
times.

operator[<>](bag : ocl::Bag , collection : ocl::Collection) :
ocl::Boolean

Returns true if the size of bag1 and bag2 are not the same or bag1 does not contain all
elements of bag2 with the same times, or bag2 does not contain all elements of bag1
with the same times.

operator[+](bag : ocl::Bag , set : ocl::Set) : ocl::Set

operator[+](bag1 : ocl::Bag , bag2 : ocl::Bag) : ocl::Bag

Returns the union of bag and set, or bag1 and bag2.

operator[*](bag : ocl::Bag , set : ocl::Set) : ocl::Set

operator[*](bag1 : ocl::Bag , bag2 : ocl::Bag) : ocl::Bag

Returns the intersection of bag and set, or bag1 and bag2.

Methods

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 162

ocl::Bag::union(set : ocl::Set) : ocl::Bag

ocl::Bag::union(bag : ocl::Bag) : ocl::Bag

Returns the union of the bag and set or bag.

ocl::Bag::intersection(set : ocl::Set) : ocl::Set

ocl::Bag::intersection(bag : ocl::Bag) : ocl::Bag

Returns the intersection of the bag and set or bag.

ocl::Bag::including(any : ocl::Any) : ocl::Bag

Returns a bag containing any.

ocl::Bag::excluding(any : ocl::Any) : ocl::Bag

Returns a bag not containing elements which equal to any.

Iterators

ocl::Bag::select(boolExpr : ocl::Boolean) : ocl::Bag

Returns a bag containing all elements of the bag for which boolExpr evaluated to true.

ocl::Bag::reject(boolExpr : ocl::Boolean) : ocl::Bag

Returns a bag containing all elements of the bag for which boolExpr evaluated to false.

ocl::Bag::collect(anyExpr : ocl::Any) : ocl::Bag

Returns a bag containing values which are returned by anyExpr applied to each
element of the bag.

ocl::Sequence
The type ocl::Sequence represents the mathematical concept of sequence.

Aliases, Supertypes
This type can be accessed as Sequence. Its supertype is ocl::Collection.

Operators

operator[=](sequence1 : ocl::Sequence , sequence2 : ocl::Sequence) :
ocl::Boolean

Returns true if the size of sequence1 and sequence2 are the same, and if at each
position the elements are equals to each other.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 163

operator[<>](sequence1 : ocl::Sequence , sequence2 : ocl::Sequence) :
ocl::Boolean

Returns true if size of sequence1 and sequence2 are not the same, or if at least one
position exists in which elements are not equal.

operator[+](sequence1 : ocl::Sequence , sequence2 : ocl::Sequence) :
ocl::Sequence

Returns the concatenation of sequence1 and sequence2.

Methods

ocl::Sequence::union(sequence : ocl::Sequence) : ocl::Sequence

Returns the concatenation of the sequence and sequence.

ocl::Sequence::append(any : ocl::Any) : ocl::Sequence

Returns the sequence whose last element is any.

ocl::Sequence::prepend(any : ocl::Any) : ocl::Sequence

Returns the sequence whose first element is any.

ocl::Sequence::first() : <innerType>

Returns the first element of the sequence. If the sequence is empty, an exception is
thrown and undefined is returned.

ocl::Sequence::last() : <innerType>

Returns the last element of the sequence. If the sequence is empty, an exception is
thrown and undefined is returned.

ocl::Sequence::at(pos : ocl::Integer) : <innerType>

Returns the element at the position pos of the sequence. If pos is less than 0, or if it is
greater than or equal to the size of the sequence, an exception is thrown and the
result is undefined.

ocl::Sequence::insertAt(pos : ocl::Integer , any : ocl::Any) :
ocl::Sequence

Returns the sequence which contains any at position pos. If pos is less than 0, or if it
is greater than or equal to the size of the sequence, an exception is thrown and the
result is undefined.

ocl::Sequence::indexOf(any : ocl::Any) : ocl::Integer

Returns the first position of the sequence where any is found. If there is no element,
which equals to any, then return –1.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 164

ocl::Sequence::subSequence(lower : ocl::Integer {, upper : ocl::Integer })
: ocl::Sequence

Returns the sub-sequence of the sequence starting at position lower up to position
upper, if upper is specified; otherwise, up to the end of the sequence. The first
position is 0. Returns undefined and an exception is thrown if lower is less than 0,
lower greater than upper, or if lower or upper are equal to or greater than the size of the
sequence.

ocl::Sequence::including(any : ocl::Any) : ocl::Sequence

Returns a sequence containing any, the position of insertion is indefinite.

ocl::Sequence::excluding(any : ocl::Any) : ocl::Sequence

Returns a sequence which does not contain any objects which are equal to any.

Iterators

ocl::Sequence::select(boolExpr : ocl::Boolean) : ocl::Sequence

Returns a sequence containing all elements for which boolExpr evaluated to true.

ocl::Sequence::reject(boolExpr : ocl::Boolean) : ocl::Sequence

Returns a sequence containing all elements for which boolExpr evaluated to false.

ocl::Sequence::collect(anyExpr : ocl::Any) : ocl::Sequence

Returns a sequence containing elements which are returned by anyExpr applied to
each element of the sequence.

GME Kinds and Meta-Kinds
This section discusses the meta-kinds and predefined kinds of GME, and all features
are described in detail.

Features, which are already deprecated, are marked with (D) and colored to red.

All features throw an exception if the object is null.

gme::Object
The meta-kind ocl::Object is the super-meta-kind of all meta-kinds of GME. It can be
contained by folders.

Aliases, Super-Meta-Kind
This meta-kind can also be accessed as Object.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 165

Operators

operator[=](object1 : gme::Object , object : gme::Object) : ocl::Boolean

Returns true if object1 is the same as object2. This equality means that the objects’ IDs
are the same.

operator[<>](object1 : gme::Object , object : gme::Object) : ocl::Boolean

Returns true if object1 is not the same as object2. This equality means that the objects’
IDs are different.

Attributes

gme::Object::name : ocl::String

Returns the name of the object.

gme::Object::kindName : ocl::String

Returns the name of the kind of the object.

gme::Object::metaKindName : ocl::String

Returns the name of the meta-kind of the object.

Methods

gme::Object::name() : ocl::String (D)

This method has the same functionality as the gme::Object::name attribute.

gme::Object::kindName() : ocl::String (D)

This method has the same functionality as the gme::Object::kindName attribute.

gme::Object::parent() : gme::Object

Returns the parent of the object. The result can be an object whose dynamic meta-
kind is either gme::Folder or gme::Model. Returns null if the object is the root folder of
the project.

gme::Object::isNull() : ocl::Boolean

Returns true if the object is null. In GME null is differs from undefined.

gme::Object::isFCO() : ocl::Boolean

Returns true if the meta-kind of the object is gme::FCO or any descendant meta-kinds.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 166

gme::Object::isFolder() : ocl::Boolean

Returns true if the meta-kind of the object is gme::Folder.

gme::Folder
The meta-kind ocl::Folder represents a folder. A folder may contain objects which
have meta-kind gme::Object.

Aliases, Super-Meta-Kind
This meta-kind can also be accessed as Folder. Its super-meta-kind is gme::Object.

Method

gme::Folder::folders() : ocl::Set(gme::Folder)

Returns a set which contains all folders recursively contained by the folder.

gme::Folder::childFolders() : ocl::Set(gme::Folder)

Returns a set which contains all folders contained by the folder.

gme::Folder::rootDescendants() : ocl::Set(gme::FCO)

Returns a set which contains all fcos which are either root objects in the folder or in
all folders that the folder contains recursively.

gme::Folder::rootChildren() : ocl::Set(gme::FCO)

Returns a set which contains all fcos which are root objects of the folder.

gme::Folder::models({ kind : ocl::String }) : ocl::Set(gme::Model) (D)

gme::Folder::models({ kind : ocl::Type }) : ocl::Set(gme::Model)

Returns a set which contains all models contained by the folder or by any child
folder or model that the folder contains recursively. If kind is specified, then the set
returned will contain objects with kind kind.

If the kind of kind (i.e. the meta-kind) is not gme::Model, then an exception is thrown
and undefined is returned.

gme::Folder::atoms({ kind : ocl::String }) : ocl::Set(gme::Atom) (D)

gme::Folder::atoms({ kind : ocl::Type }) : ocl::Set(gme::Atom)

Returns a set which contains all atoms contained by the folder, or by any child folder
or model that the folder contains recursively. If kind is specified, then the set returned
will contain objects with kind kind.

If the kind of kind (i.e. the meta-kind) is not gme::Atom, then an exception is thrown
and undefined is returned.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 167

gme::FCO
The meta-kind gme::FCO represents a first class object. gme::FCO can be contained by
a gme::Model or a gme::Folder, be associated to any gme::FCO, inherit properties by
either standard or interface or implementation inheritance (only in time of meta-
modeling), have attributes, be contained by a gme::Set, and last but not least be
referred by a gme::Reference.

Aliases, Super-Meta-Type
This meta-kind can also be accessed as FCO. Its super-meta-kind is gme::Object.

Attributes

gme::FCO::roleName : ocl::String

Returns the name of the role of the fco, which is contained by a model.

Methods

gme::FCO::roleName() : ocl::String (D)

This method has the same functionality as gme::FCO::roleName.

gme::FCO::connected({ role : ocl::String {, kind : ocl::String } }) :
ocl::Set(gme::FCO) (D)

gme::FCO::connectedFCOs({ role : ocl::String {, kind : ocl::String } }) :
ocl::Set(gme::FCO) (D)

gme::FCO::connectedFCOs({ role : ocl::String {, kind : ocl::Type } }) :
ocl::Set(gme::FCO)

gme::FCO::connectedFCOs(kind : ocl::Type) : ocl::Set(gme::FCO)

gme::FCO::bagConnectedFCOs({ role : ocl::String {, kind : ocl::Type } }) :
ocl::Bag(gme::FCO)

gme::FCO::bagConnectedFCOs(kind : ocl::Type) : ocl::Bag(gme::FCO)

Returns a set or a bag which contains all fcos that are associated with the fco. If role
is specified, then it returns only those, which have the same role in the link. If kind is
specified, the kind of connections must be kind.

If the kind of kind (i.e. the meta-kind) is not gme::Connection, then an exception is
thrown and undefined is returned.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 168

gme::FCO::connectedAs({ role : ocl::String {, kind : ocl::String } }) :
ocl::Set(gme::FCO) (D)

gme::FCO::reverseConnectedFCOs({ role : ocl::String {, kind : ocl::String }
}) : ocl::Set(gme::FCO) (D)

gme::FCO::reverseConnectedFCOs({ role : ocl::String {, kind : ocl::Type } }
) : ocl::Set(gme::FCO)

gme::FCO::reverseConnectedFCOs(kind : ocl::Type) : ocl::Set(gme::FCO)

gme::FCO::bagReverseConnectedFCOs({ role : ocl::String {, kind : ocl::Type }
}) : ocl::Bag(gme::FCO)

gme::FCO::bagReverseConnectedFCOs(kind : ocl::Type) : ocl::Bag(gme::FCO)

Returns a set or a bag which contains all fcos that are associated with this fco. If role
is specified, then only the links in which the fco takes part as role are regarded. If kind
is specified, the kind of connections must be kind.

If the kind of kind (i.e. the meta-kind) is not gme::Connection, then an exception is
thrown and undefined is returned.

gme::FCO::attachingConnPoints ({ role : ocl::String {, kind : ocl::String }
}) : ocl::Set(gme::ConnectionPoint) (D)

gme::FCO::attachingConnPoints ({ role : ocl::String {, kind : ocl::Type } }
) : ocl::Set(gme::ConnectionPoint)

gme::FCO::attachingConnPoints (kind : ocl::Type) : ocl::Set(
gme::ConnectionPoint)

Returns a set which contains all connection points (association ends) of the fco. If
role is specified, then the role of the connection point has to match role. If kind is
specified, the kind of connections must be kind.

If the kind of kind (i.e. the meta-kind) is not gme::Connection, then an exception is
thrown and undefined is returned.

gme::FCO::attachingConnections ({ role : ocl::String {, kind : ocl::String }
}) : ocl::Set(gme::Connection) (D)

gme::FCO::attachingConnections ({ role : ocl::String {, kind : ocl::Type } }
) : ocl::Set(gme::Connection)

gme::FCO::attachingConnections (kind : ocl::Type) : ocl::Set(
gme::Connection)

Returns a set which contains all connections (instances of association class) that is a
link of the fco. If role is specified, then the role of the connection point in the side of
the fco has to match role. If kind is specified, the kind of the regarded connections
must be kind.

If the kind of kind (i.e. the meta-kind) is not gme::Connection, then an exception is
thrown and undefined is returned.

gme::FCO::isConnectedTo (fco : gme::FCO {, role : ocl::String {, kind :
ocl::String } }) : ocl::Boolean (D)

gme::FCO::isConnectedTo (fco : gme::FCO {, role : ocl::String {, kind :
ocl::Type } }) : ocl::Boolean

gme::FCO::isConnectedTo (fco : gme::FCO, kind : ocl::Type) : ocl::Boolean

Returns true if fco is connected to the fco. If role is specified, then the role of fco has
to match role. If kind is specified, the kind of regarded connections must be kind.

If the kind of kind (i.e. the meta-kind) is not gme::Connection, then an exception is
thrown and undefined is returned.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 169

gme::FCO::subTypes() : ocl::Set(gme::FCO)

Returns a set which contains all fcos that are subtypes of the fco. Returns an empty
set if the fco is not a type.

gme::FCO::instances() : ocl::Set(gme::FCO)

Returns a set which contains all fcos that are instances of this fco as a type. Returns
an empty set if the fco is an instance.

gme::FCO::type() : gme::FCO

Returns the type of this fco.

gme::FCO::baseType() : gme::FCO

Returns the base type of this fco.

gme::FCO::isType() : ocl::Boolean

Returns true if the fco is a type.

gme::FCO::isInstance() : ocl::Boolean

Returns true if the fco is not a type, which case it would be an instance.

gme::FCO::folder() : gme::Folder

Returns the closest folder which contains this fco recursively over models.

gme::FCO::referencedBy({ kind : ocl::String }) : ocl::Set(gme::Reference)
(D)

gme::FCO::referencedBy({ kind : ocl::Type }) : ocl::Set(gme::Reference)

Returns a set of references which refer to this fco. If kind is specified, then only those
references whose kind is kind will be returned.

If the kind of kind (i.e. the meta-kind) is not gme::Reference, then an exception is
thrown and undefined is returned.

gme::FCO::memberOfSets({ kind : ocl::String }) : ocl::Set(gme::Set) (D)

gme::FCO::memberOfSets({ kind : ocl::Type }) : ocl::Set(gme::Set)

Returns a set of sets of GME that contains this fco. If kind is specified, then only
those sets of GME whose kind is kind will be returned.

If the kind of kind (i.e. the meta-kind) is not gme::Set, then an exception is thrown and
undefined is returned.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 170

gme::Connection
The meta-kind gme::Connection corresponds to the well known UML meta-type called
Association Class.

Aliases, Super-Meta-Type
This meta-kind can also be accessed as Connection. Its super-meta-kind is gme::FCO.

Methods

gme::Connection::connectionPoints({ role : ocl::String }) : ocl::Set(
gme::ConnectionPoint)

gme::Connection::connectionPoint(role : ocl::String) : gme::ConnectionPoint

The first call returns a set of connection points (association ends) of the connection.
If role is specified, then the role of the points has to match role. The second call ease
the access only one connection point.

gme::Reference
The meta-kind gme::Reference is a special meta-kind of GME. It can be considered to
be a pointer to an fco.

Aliases, Super-Meta-Type
This meta-kind can also be accessed as Reference. Its super-meta-kind is gme::FCO.

Methods

gme::Reference::usedByConnPoints({ kind : ocl::String }) : ocl::Set(
gme::ConnectionPoint) (D)

gme::Reference::usedByConnPoints({ kind : ocl::Type }) : ocl::Set(
gme::ConnectionPoint)

Returns a set of connection points (association ends) of the reference in which the
reference participates. With kind, we can filter those points which are only parts of
connections having the same kind.

If the kind of kind (i.e. the meta-kind) is not gme::Reference, then an exception is
thrown and undefined is returned.

gme::Reference::refersTo() : gme::FCO

Returns the fco to which the reference refers. The return object can be null if the
reference points to null.

gme::Set
The meta-kind gme::Set corresponds to a set which can contains fcos.

Aliases, Super-Meta-Type
This meta-kind can also be accessed as Set. Its super-meta-kind is gme::FCO.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 171

Methods

gme::Connection::members() : ocl::Set(gme::FCO)

Returns a set of fcos that are contained by the set of GME.

gme::Atom
The meta-kind gme::Atom is the meta-kind of those objects which are not abstract and
have no more feature than gme::FCO.

Aliases, Super-Meta-Type
This meta-kind can also be accessed as Atom. Its super-meta-kind is gme::FCO.

gme::Model
The meta-kind gme::Model is the abstraction of containers which can contain fcos.

Aliases, Super-Meta-Type
This meta-kind can also be accessed as Model. Its super-meta-kind is gme::FCO.

Methods

gme::Model::models({ kind : ocl::String }) : ocl::Set(gme::Model) (D)

gme::Model::models({ kind : ocl::Type }) : ocl::Set(gme::Model)

gme::Model::atoms({ kind : ocl::String }) : ocl::Set(gme::Atom) (D)

gme::Model::atoms({ kind : ocl::Type }) : ocl::Set(gme::Atom)

These methods have the same functionality as parts has, the exception that they
return objects whose meta-kind is the same as the method’s prefix.

These methods return the set of contained objects which are contained recursively by
the model (its immediate children and its descendants’ models’ children). The
returned set will contain objects that have the appropriate meta-kind.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 172

gme::Model::atomParts({ role : ocl::String }) : ocl::Set(gme::Atom)

gme::Model::modelParts({ role : ocl::String }) : ocl::Set(gme::Model)

gme::Model::connectionParts({ role : ocl::String }) : ocl::Set(
gme::Connection)

gme::Model::referenceParts({ role : ocl::String }) : ocl::Set(
gme::Reference)

gme::Model::setParts({ role : ocl::String }) : ocl::Set(gme::Set)

gme::Model::parts({ role : ocl::String }) : ocl::Set(gme::FCO)

gme::Model::atomParts(kind : ocl::Type) : ocl::Set(gme::Atom)

gme::Model::modelParts(kind : ocl::Type) : ocl::Set(gme::Model)

gme::Model::connectionParts(kind : ocl::Type) : ocl::Set(gme::Connection)

gme::Model::referenceParts(kind : ocl::Type) : ocl::Set(gme::Reference)

gme::Model::setParts(kind : ocl::Type) : ocl::Set(gme::Set)

gme::Model::parts(kind : ocl::Type) : ocl::Set(gme::FCO)

These methods return a set which contains the parts (i.e. immediate children) of the
model.

For these methods we can specify a role name, which is the containment role of the
object as it is contained by the model. This role may differ from the role that the user
defined in the meta-model. This is the case if the role is defined as an abstract kind in
the meta-model. Because the inheritance information is lost the interpreter has to
create distinguishable roles for the objects by concatenating the kind and the role.

If the kind of kind (i.e. the meta-kind) does not correspond to the method name, then
an exception is thrown and undefined is returned.

gme::Project
This kind is predefined in GME, and has exactly one instance in all models. It is
introduced to facilitate writing constraint definitions whose context cannot be any of
the kinds defined in the paradigm.

Aliases, Supertypes
This kind can be accessed as Project. Its supertype is ocl::Any.

Operators

operator[=](project1 : gme::Project, project2 : gme::Project) :
ocl::Boolean

operator[<>](project1 : gme::Project, project2 : gme::Project) :
ocl::Boolean

These operators are defined because of consistency. But since there is only one
instance of gme::Project in all projects, these features are useless.

Attributes

gme::project::name

Returns the name of the project.

This attribute can be used to check whether the project is included as a library in
another project.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 173

Methods

gme::project::allInstancesOf(kind : ocl::Type) : ocl::Set(gme::Object)

Returns a set which contains all objects in the project whose kind is kind.

If kind is not defined in the paradigm, an exception is thrown and undefined is
returned.

gme::project::rootFolder() : gme::RootFolder

Returns the root folder of the project.

gme::RootFolder
This kind is predefined in GME, and has exactly one instance in all projects. It is
introduced because at meta-modeling time this folder has to be referred to somehow.

It does not have special features regarding its meta-kind gme::Folder.

Aliases, Supertypes, Meta-Type
This kind can be accessed as RootFolder. Its super-type is ocl::Any. Its meta-kind is
gme::Folder.

gme::ConnectionPoint
This kind corresponds to association-end in GME. Using this kind is not
recommended, because it serves meta-kind information and is not defined well in
standard OCL. This kind will be likely eliminated and replaced by a standard type
(AssociationEnd) in the new implementation of OCL.

Aliases, Supertypes
This kind can be accessed as ConnPoint or ConnectionPoint. Its super-type is ocl::Any.

Operators

operator[=](cp1 : gme::ConnectionPoint, cp2 : gme:: ConnectionPoint) :
ocl::Boolean

operator[<>](cp1 : gme:: ConnectionPoint, cp2 : gme:: ConnectionPoint) :
ocl::Boolean

The first operator returns true if cp1 and cp2 have the same role, are attached to the
same fco, and are connection-points of the same connection. If at least one of these
conditions is not satisfied, it returns false.

The second operator returns true if at least one of these conditions is not satisfied.

Attributes

gme::ConnectionPoint::cpRoleName : ocl::String

Returns the role of the connection point.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 174

Methods

gme::ConnectionPoint::cpRoleName() : ocl::String (D)

This method has the same functionality as the gme::ConnectionPoint::cpRoleName
attribute.

gme::ConnectionPoint::target() : gme::FCO

Returns the fco to which this connection point is attached.

gme::ConnectionPoint::owner() : gme::Connection

Returns the connection that has this connection point.

gme::ConnectionPoint::peer() : gme::ConnectionPoint

If the connection point is owned by a binary connection, then it returns the other
connection point of the connection, otherwise it throws an exception and returns
undefined.

gme::ConnectionPoint::usedReferences() : ocl::Sequence(gme::FCO)

Returns a sequence which contains all references used by the connection point. The
first reference is farthest from the target of the connection point.

Generic Modeling Environment User's Manual Appendix B – OCL and GME • 175

Appendix C – BON and MON

Meta Object Network Classes

MON::Project

Base Classes

Attributes

MON::ProjectPtr getProjectI() const;

std::string name() const;

std::string displayedName() const;

std::string author() const;

std::string comment() const;

std::string creationTime() const;

Methods

std::string infoString(bool bWithIdentifiers = false) const;

MON::Folder rootFolder() const;

Generic Modeling Environment User's Manual Appendix C – BON and MON • 176

std::set<MON::Folder> folders() const;

std::set<MON::Atom> atoms() const;

std::set<MON::Model> models() const;

std::set<MON::Set> sets() const;

std::set<MON::Connection> connections() const;

std::set<MON::Reference> references() const;

std::set<MON::Attribute> attributes() const;

std::set<MON::Aspect> aspects() const;

std::set<MON::FolderContainment> folderContainments() const;

std::set<MON::ReferenceAssociation> referenceAssociations() const;

std::set<MON::SetMembership> setMemberships() const;

std::set<MON::Containment> containments() const;

std::set<MON::ConnectionEnd> connectionEnds() const;

std::set<MON::ModelInAspect> modelInAspects() const;

std::set<MON::ContainmentPart> containmentParts() const;

std::set<MON::AttributeAggregation> attributeAggregations() const;

MON::MetaObject findByRef(long lRef) const;

MON::MetaObject findByName(const std::string strName) const;

MON::MetaObject

Base Classes

Attributes

MON::ObjectPtr getObjectI() const;

std::string name() const;

std::string displayedName() const;

long ref() const;

MON::ObjectType type() const;

Methods

std::string infoString(bool bWithIdentifiers = false, bool bWithRef = false
) const;

Generic Modeling Environment User's Manual Appendix C – BON and MON • 177

MON::Project project() const;

MON::RegistryNode registry() const;

MON::Object

Base Classes
MON::MetaObject

Methods

std::set<MON::FolderContainment> parentFolderContainments() const;

std::set<MON::Folder> parentFolders() const;

bool isFolderParent(const MON::Folder& folder) const;

std::set<MON::Constraint> constraints() const;

MON::Folder

Base Classes
MON::Object

Attributes

MON::FolderPtr getFolderI() const;

Methods

std::set<MON::FolderContainment> childFolderContainments() const;

std::set<MON::Object> childObjects() const;

std::set<MON::Folder> childFolders() const;

std::set<MON::FCO> childFCOs() const;

std::set<MON::Atom> childAtoms() const;

std::set<MON::Model> childModels() const;

bool isObjectChild(const MON::Object& object) const;

MON::FCO
…

Generic Modeling Environment User's Manual Appendix C – BON and MON • 178

Base Classes
MON::Object

Attributes

MON::FCOPtr getFCOI() const;

Methods

std::set<MON::Containment> parentContainments() const;

std::set<MON::Model> parentModels() const;

bool isModelParent(const MON::Model& model) const;

std::set<MON::ConnectionEnd> connectionEnds() const;

std::set<MON::ConnectionRole> targetOf() const;

bool isTargetOf(const MON::ConnectionRole& role) const;

std::set<MON::ReferenceAssociation> referenceAssociations() const;

std::set<MON::Reference> referencedBy() const;

bool isReferencedBy(const MON::Reference& reference) const;

std::set<MON::SetMembership> setMemberships() const;

std::set<MON::Set> memberOf() const;

bool isMemberOf(const MON::Set& set) const;

std::set<MON::AttributeAggregation> attributeAggregations() const;

std::set<MON::Attribute> attributes(bool bLocalsAlso = true) const;

std::set<MON::Attribute> localAttributes() const;

bool hasAttribute(const MON::Attribute& attribute) const;

MON::Atom

Base Classes
MON::Atom

Generic Modeling Environment User's Manual Appendix C – BON and MON • 179

Attributes

MON::AtomPtr getAtomI() const;

MON::Model

Base Classes
MON::FCO

Attributes

MON::ModelPtr getModelI() const;

Methods

std::set<MON::Containment> childContainments() const;

std::set<MON::FCO> childFCOs() const;

std::set<MON::Atom> childAtoms() const;

std::set<MON::Model> childModels() const;

std::set<MON::Reference> childReferences() const;

std::set<MON::Connection> childConnections() const;

std::set<MON::Set> childSets() const;

bool isFCOChild(const MON::FCO& fco) const;

std::set<MON::ModelInAspect> modelInAspects() const;

std::set<MON::Aspect> aspects() const;

bool hasAspect(const MON::Aspect& aspect) const;

MON::Connection

Base Classes
MON::FCO

Attributes

MON::ConnectionPtr getConnectionI() const;

bool isSimple() const;

Generic Modeling Environment User's Manual Appendix C – BON and MON • 180

bool isBidirectional() const;

Methods

int specificationCount() const;

std::set<MON::ConnectionSpecification> specifications() const;

MON::ConnectionSpecification specification(int iNum) const;

MON::ConnectionSpecification

Base Classes

Attributes

int number() const;

Methods

std::string infoString(bool bWithIdentifiers = false, bool bWithRef = false
) const;

MON::Project project() const;

MON::Connection connection() const;

std::set<MON::ConnectionRole> roles() const;

MON::ConnectionRole role(const std::string& strRole) const;

MON::ConnectionRole

Base Classes

Attributes

std::string name() const;

Methods

std::string infoString(bool bWithIdentifiers = false, bool bWithRef = false
) const;

MON::Project project() const;

Generic Modeling Environment User's Manual Appendix C – BON and MON • 181

MON::ConnectionSpecification specification() const;

std::set<MON::ConnectionEnd> connectionEnds() const;

std::set<MON::Containment> targetRoles() const;

std::set<MON::FCO> targets() const;

bool isTarget(const MON::Containment& role) const;

bool isTarget(const MON::FCO& fco) const;

MON::Set

Base Classes
MON::FCO

Attributes

MON::SetPtr getSetI() const;

Methods

std::set<MON::SetMembership> memberships() const;

std::set<MON::Containment> memberRoles() const;

bool isMember(const MON::Containment& role) const;

MON::Reference

Base Classes
MON::Reference

Attributes

MON::ReferencePtr getReferenceI() const;

Methods

std::set<MON::ReferenceAssociation> refAssociations() const;

std::set<MON::Containment> targetRoles() const;

Generic Modeling Environment User's Manual Appendix C – BON and MON • 182

bool isTarget(const MON::Containment& role) const;

MON::RegistryNode

Base Classes

Attributes

MON::RegNodePtr getRegNodeI() const;

bool isRoot() const;

std::string name() const;

std::string value() const;

long integerValue() const;

double realValue() const;

bool boolValue() const;

Methods

MON::Project project() const;

MON::MetaObject object() const;

std::string path() const;

std::string valueByPath(const std::string& strPath) const;

MON::RegistryNode parent() const;

std::set<MON::RegistryNode> children() const;

MON::RegistryNode child(const std::string& strName) const;

….

Generic Modeling Environment User's Manual Appendix C – BON and MON • 183

MON::RegistryNode childByPath(const std::string& strPath) const;

MON::Constraint

Base Classes

Attributes

MON::ConstraintPtr getConstraintI() const;

std::string name() const;

std::string description() const;

std::vector<std::string> equation() const;

std::string displayedName() const;

std::set<MON::ObjectEventType> events() const;

MON::ConstraintPriority priority() const;

MON::ConstraintDepth depth() const;

Methods

MON::Project project() const;

MON::Object object() const;

MON::Containment

Base Classes
MON::MetaObject

Attributes

MON::ContainmentPtr getContainmentI() const;

Methods

Generic Modeling Environment User's Manual Appendix C – BON and MON • 184

MON::Model parent() const;

MON::FCO child() const;

std::set<MON::ConnectionEnd> connectionEnds() const;

std::set<MON::ConnectionRole> targetOf() const;

bool isTargetOf(const MON::ConnectionEnd& end) const;

std::set<MON::ContainmentPart> parts() const;

std::set<MON::Aspect> aspects() const;

bool isVisibleIn(const MON::Aspect& aspect) const;

std::set<MON::ReferenceAssociation> referenceAssociations() const;

std::set<MON::Reference> referencedBy() const;

bool isReferencedBy(const MON::Reference& reference) const;

std::set<MON::SetMembership> setMemberships() const;

std::set<MON::Set> memberOf() const;

bool isMemberOf(const MON::set& set) const;

MON::ContainmentPart

Base Classes
MON::MetaObject

Attributes

MON::PartPtr getPartI() const;

bool isLinked() const;

bool isPrimary() const;

Methods

Generic Modeling Environment User's Manual Appendix C – BON and MON • 185

MON::Containment containment() const;

MON::Aspect aspect() const;

MON::Aspect

Base Classes
MON::MetaObject

Attributes

MON::AspectPtr getAspectI() const;

Methods

std::set<MON::ModelInAspect> modelInAspects() const;

std::set<MON::Model> models() const;

bool isContainedBy(const MON::Model& model) const;

std::set<MON::ContainmentPart> parts() const;

std::set<MON::Containment> containments() const;

bool hasContainment(const MON::Containment& role) const;

MON::Attribute

Base Classes
MON::MetaObject

Attributes

MON::AttributePtr getAttributeI() const;

Util::Variant defaultValue() const;

MON::AttributeType valueType() const;

Generic Modeling Environment User's Manual Appendix C – BON and MON • 186

std::vector<MON::Attribute::Namevalue> enumItems() const;

Methods

std::set<MON::AttributeAggregation> attributeAggregations() const;

std::set<MON::FCO> FCOs() const;

bool isContainedBy(const MON::FCO& fco) const;

MON::FCO owner() const;

MON::FolderContainment

Base Classes

Methods

std::string infoString(bool bWithIdentifiers = false, bool bWithRef = false
) const;

MON::Project project() const;

MON::Folder parent() const;

MON::Object child() const;

MON::ConnectionEnd

Base Classes

Methods

std::string infoString(bool bWithIdentifiers = false, bool bWithRef = false
) const;

MON::Project project() const;

MON::ConnectionRole role() const;

Generic Modeling Environment User's Manual Appendix C – BON and MON • 187

MON::Containment target() const;

MON::ReferenceAssociation

Base Classes

Methods

std::string infoString(bool bWithIdentifiers = false, bool bWithRef = false
) const;

MON::Project project() const;

MON::Reference reference() const;

MON::Containment target() const;

MON::SetMembership

Base Classes

Methods

std::string infoString(bool bWithIdentifiers = false, bool bWithRef = false
) const;

MON::Project project() const;

MON::Set set() const;

MON::Containment member() const;

MON::ModelInAspect

Base Classes

Methods

std::string infoString(bool bWithIdentifiers = false, bool bWithRef = false
) const;

Generic Modeling Environment User's Manual Appendix C – BON and MON • 188

MON::Project project() const;

MON::Aspect aspect() const;

MON::Model model() const;

MON::AttributeAggregation

Base Classes

Methods

std::string infoString(bool bWithIdentifiers = false, bool bWithRef = false
) const;

MON::Project project() const;

MON::FCO fco() const;

MON::Attribute attribute() const;

Builder Object Network Classes
In this section the BON2 implementation classes are discussed regarding their public
interface. The titles of the subsections are the names of the wrapper classes for the
sake of simplicity, all calls are accessible with -> operator. Exceptions are
BON::Event, BON::EventListener, BON::EventListenerPool and BON:Visitor. The static calls
are static operation of the wrapper classes.

These calls throw Util::Exception if the object is null. All input parameters are checked
whether they belong to the same project or the same meta-project of the project. In
case of violation either BON::Exception or MON::Exception is thrown.

Before performing any operation which may or does require some kind of meta-
information (MON object or string literal with the name of a MON object), the
supplied parameters are checked whether the meta-project allows the appropriate
relationship and the structure or not. If it is invalid due to the meta-project,
MON::Exception is thrown.

The validations discussed above are not mentioned at the descriptions of the specific
operations.

BON::Project
This class corresponds to the IMgaProject COM interface. For each IMgaProject there is
only one singleton BON::Project instance.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 189

Base Classes
This class implements the BON::EventListenerPool interface.

Attributes

BON::ProjectPtr getProjectI() const;

This call returns the corresponding IMgaProject COM interface. This call is intended
for advanced users who are familiar with the architecture of BON2. It may be used
for special and/or unimplemented operations.

const MON::Project& getProjectMeta() const;

This call returns a constant reference of the MON::Project.

std::string getName() const;

It returns the name of the project.

void setName(const std::string& strName);

It sets the name of the project.

std::string getAuthor() const;

It returns the author of the project.

void setAuthor(const std::string& strAuthor);

It sets the author of the project.

std::string getComment() const;

It returns the project’s comment string.

void setComment(const std::string& strComment);

It sets the comment string of the project.

std::string getCreationTime() const;

It returns the time when the project was created.

std::string getChangeTime() const;

It returns the time when the project was last modified.

Methods

Generic Modeling Environment User's Manual Appendix C – BON and MON • 190

BON::Folder getRootFolder() const;

This call returns the root folder of the project.

BON::Object findByID(const std::string& strID, bool bNeedExc = false)
const;

This operation returns the BON::Object which has the ID strID. If the ID is invalid (i.e.
there is no object in the project with this ID), null object is returned in default. If
bNeedExc is true, then BON::Exception is thrown.

std::set<BON::Object> findByKind(const MON::Object& meta) const;

std::set<BON::Object> findByKind(const std::string& strKind) const;

The first operation returns all objects in the project whose kind is the supplied
MON::Object meta-object. If meta is null or the meta-project of the project does not
have MON::Object called strKind, MON::Exception is thrown.

std::string getInfoString(Util::InfoOptions usOptions = Util::IO_None)
const;

std::string getInfoString(const std::set<Util::InfoOption>& setOptions)
const;

It returns a string describing the project including the name, creation time etc. The
details and the format can be set be the options.

BON::Object
This is the base class of BON::FCO and BON::Folder. It implements common
features of objects in a project.

Base Classes
This class implements the BON::EventListenerPool interface.

Construction and Destruction

static BON::Object attach(IMgaObject* pObject);

Creates a BON object to the specified COM interface.

virtual void initalize();

This operation is called by the BON::ExtensionX classes, when the object is created.
The user must override this method manually if specific intialization must be done.

virtual void finalize();

This operation is called before the object destruction. The user must override this
method manually if specific finalization must be done or additional BON objects are
cached by the object.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 191

void destroy();

The method removes the object from the project. All links linked to the object and all
possible exting children will be removed also.

Attributes

BON::ObjectPtr getObjectI() const;

This call returns the corresponding IMgaObject COM interface. This call is intended
for advanced users who are familiar with the architecture of BON2. It may be used
for special and/or unimplemented operations.

const MON::Object& getObjectMeta() const;

This call returns a constant reference of the MON::Object which real type can be
MON::FCO or MON::Folder.

std::string getID() const;

Returns the ID of the object.

BON::ObjectType getStereotype() const;

Returns the stereotype of the object (i.e. BON::OT_Atom, BON::OT_Model,
BON::OT_Connection, BON::OT_Reference, BON::OT_Set, BON::OT_Folder).

BON::ObjectStatus getStatus() const;

Returns the status of the object. The object exists if and only if BON::OST_Exists is
returned otherwise the user has to consider it as a deleted object.

bool isReadOnly() const;

Returns true if the object is read only (i.e. its state cannot be modified, and its pre-
existing relationships cannot be either deleted or altered. Typical example when the
object resides in a library. It can be used in the project.

bool isInLibrary() const;

Returns true if the objects resides in a library.

std::string getName() const;

It returns the name of the object.

void setName(const std::string& strName);

It sets the name of the object.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 192

Methods

BON::Project getProject() const;

It returns the project to which the object belongs.

std::string getPath(const std::string& strDelimiter = “/”, bool
bReverseOrder = false, bool bNeedRootFolder = false) const;

It returns the path of the object. The path consists model and folder names. In case of
the default order it always starts with strDelimiter string and ends with name name of
the object. In default the name of the root folder is not included, and for the root
folder it is only the strDelimiter string.

BON::Object getParent() const;

This operation returns the parent of the object, which can be a BON:Model or a
BON:Folder. In case of the root folder, the result is null.

BON::Folder getParentFolder(const MON::Folder& meta = MON::Folder()) const;

BON::Folder getParentFolder(const std::string& strFolder) const;

The first operation returns the parent folder. If the object is child of a model, then the
result is null. If meta is not null, the result is null if the kind of the returned folder
would not be meta. The second form of the call behaves the same way as the first
one. Empty string means that there is no kind restriction.

BON::RegistryNode getRegistry() const;

It returns the root registry node for the object.

void accept(BON::Visitor* pVisitor);

This is an “abstract” operation for BON::Visitor. This call is delegated to the
appropriate accept() of the object (i.e. considering the dynamic type of the object).

std::string getInfoString(Util::InfoOptions usOptions = Util::IO_None)
const;

std::string getInfoString(const std::set<Util::InfoOption>& setOptions)
const;

It returns a string describing the object including the name, kind and metakind by
default. The details and the format can be set be the options.

BON::Folder
This class corresponds to the IMgaFolder COM interface.

Base Classes
It inherits from BON::Object.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 193

Construction and Destruction

static BON::Folder attach(IMgaFolder* pFolder);

Creates a BON folder for the specified COM object.

static BON::Folder create(const BON::Folder& parent, const MON::Folder& meta
= MON::Folder());

static BON::Folder create(const BON::Folder& parent, const std::string&
strFolder);

Creates a child folder in the specified folder parent which kind will be meta.

Attributes

BON::FolderPtr getFolderI() const;

This call returns the corresponding IMgaFolder COM interface. This call is intended
for advanced users who are familiar with the architecture of BON2. It may be used
for special and/or unimplemented operations.

MON::Folder getFolderMeta() const;

Returns the appropriate MON::Folder of the folder.

Methods

std::set<BON::Object> getChildObjects(const MON::Object& meta =
MON::Object()) const;

std::set<BON::Object> getChildObjects(const std::string& strObject) const;

The operations return a set containing the child objects of the folder including root
fcos and child folders. If meta is not null or strObject is specified (i.e. not empty
string), only those objects are returned which satisfy the kind restriction.

std::set<BON::Folder> getChildFolders() const;

std::set<BON::FCO> getRootFCOs() const;

std::set<BON::Atom> getChildAtoms() const;

std::set<BON::Model> getChildModels() const;

These calls return a set containing the child objects whose stereotype is defined in
the name of the operation.

BON::Object findByPath(const std::string& strPath, const std::string&
strDelimiter = "/", bool bReverseOrder = false);

The call returns an object whose path is strPath. If there is such an object, null is
returned. The direction of the path and the separator can be specified with
bReverseOrder and strDelimiter.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 194

BON::ConnectionEnd
This class is the base class of BON::FCO and BON::ReferencePort. It is used
BON::Connection related calls only. The reason why it introduced is that the ends of a
connection can be an fco itself or a reference-port referring to the fco directly or
indirectly.

Base Classes
There is no base class.

Attributes

bool isReferencePort() const;

It returns true if the connection-end is a reference-port.

Methods

MON::Project getProject() const;

It returns the project to which the connection-end belongs.

std::set<BON::Connection> getConnLinks(const MON::Connection& meta =
MON::Connection(), const std::string& strRole = "", bool bIncludeRefs = true,
const MON::Aspect& aspect = MON::Aspect()) const;

std::set<BON::Connection> getConnLinks(const std::string& strConnection,
const std::string& strRole = "", bool bIncludeRefs = true, const MON::Aspect&
aspect = MON::Aspect()) const;

The operations return a set containing the connections whose at least one end is this
connection-end. If meta is not null or strConnection is not empty, then only those
connections are included into the set whose kind matches to the specified one. If
strRole is not empty, then the connection role with which the connection is attached
to the connection-end, must match to strRole.
If bIncludeRefs is false, then only those connections are included which are attached to
only this connection-end. If the value is true, then the result set is wider. If the
connection-end is an fco, those connections are included which are attached directly
to the fco or to one of its reference-ports. If the connection-end is a reference-port,
the connections which are attached to the port or to one of its descendant reference-
ports, are returned.

If aspect is not null then the result is filtered with the aspect (i.e. the connections must
have a containment role with which the connection is visible in the aspect or they
must be child of a folder).

Generic Modeling Environment User's Manual Appendix C – BON and MON • 195

std::set<BON::Connection> getInConnLinks(const MON::Connection& meta =
MON::Connection(), bool bIncludeRefs = true, const MON::Aspect& aspect =
MON::Aspect()) const;

std::set<BON::Connection> getInConnLinks(const std::string& strConnection,
bool bIncludeRefs = true, const MON::Aspect& aspect = MON::Aspect()) const;

std::set<BON::Connection> getOutConnLinks(const MON::Connection& meta =
MON::Connection(), bool bIncludeRefs = true, const MON::Aspect& aspect =
MON::Aspect()) const;

std::set<BON::Connection> getOutConnLinks(const std::string& strConnection,
bool bIncludeRefs = true, const MON::Aspect& aspect = MON::Aspect()) const;

These operations have the same behaviour as getConnLinks() except of that no
connection-role can be specified. getInConnLinks() supplies dst role, getOutConnLinks(
) supplies src role implicitly.

These operations can be used only for simple connections (i.e. connections having
exactly two connection ends), otherwise BON::Exception is thrown.

std::multiset<BON::ConnectionEnd> getConnEndsAs(const MON::Connection& meta
= MON::Connection(), const std::string& strRole = "", bool bIncludeRefs =
true, const MON::Aspect& aspect = MON::Aspect()) const;

std::multiset<BON::ConnectionEnd> getConnEndsAs(const std::string&
strConnection, const std::string& strRole = "", bool bIncludeRefs = true,
const MON::Aspect& aspect = MON::Aspect()) const;

These operations are implemented for the sake of convenience. They return a
multiset containing those connection-ends, which are connected to this connection-
end.

If strRole is specified, then only those connections are regarded in which the
connection-end takes part with connection-role strRole.
meta, strConnection, bIncludeRefs and aspect parameters are used in the same way as
getConnLinks() operations use them.

std::multiset<BON::ConnectionEnd> getConnEnds(const MON::Connection& meta =
MON::Connection(), const std::string& strRole = "", bool bIncludeRefs = true,
const MON::Aspect& aspect = MON::Aspect()) const;

std::multiset<BON::ConnectionEnd> getConnEnds(const std::string&
strConnection, const std::string& strRole = "", bool bIncludeRefs = true,
const MON::Aspect& aspect = MON::Aspect()) const;

These operations are implemented for the sake of convenience. They return a
multiset containing those connection-ends, which are connected to this connection-
end.

If strRole is specified, then only those connection-ends are returned whose
connection-role is strRole.
meta, strConnection, bIncludeRefs and aspect parameters are used in the same way as
getConnLinks() operations use them.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 196

std::multiset<BON::ConnectionEnd> getInConnEnds(const MON::Connection& meta
= MON::Connection(), bool bIncludeRefs = true, const MON::Aspect& aspect =
MON::Aspect()) const;

std::multiset<BON::ConnectionEnd> getInConnEnds(const std::string&
strConnection, bool bIncludeRefs = true, const MON::Aspect& aspect =
MON::Aspect()) const;

std::multiset<BON::ConnectionEnd> getOutConnEnds(const MON::Connection& meta
= MON::Connection(), bool bIncludeRefs = true, const MON::Aspect& aspect =
MON::Aspect()) const;

std::multiset<BON::ConnectionEnd> getOutConnEnds(const std::string&
strConnection, bool bIncludeRefs = true, const MON::Aspect& aspect =
MON::Aspect()) const;

These operations have the same behaviour as getConnEndsAs() except of that no
connection-role can be specified. getInConnEnds() supplies dst role, getOutConnEnds()
supplies src role implicitly.

These operations can be used only for simple connections (i.e. connections having
exactly two connection ends), otherwise BON::Exception is thrown.

std::multiset<BON::ConnectionEnd> getDirectConnEnds(const MON::Connection&
meta, const std::string& strRole, bool bIncludeRefs = true, const
MON::Aspect& aspect = MON::Aspect()) const;

std::multiset<BON::ConnectionEnd> getDirectConnEnds(const std::string&
strConnection, const std::string& strRole, bool bIncludeRefs = true, const
MON::Aspect& aspect = MON::Aspect()) const;

These operations are implemented for the sake of convenience. They return a
multiset containing those connection-ends, which are leafs in a specific connection-
tree.

The root of the tree corresponds to this connection-end. The tree’s directed edges
correspond to those connections whose kind is meta or whose kind’s name is
strConnection, and whose source is a connection-end to which the connection attached
with connection-role strRole. The nodes of the tree correspond to connection-ends.

meta, strConnection, strRole, bIncludeRefs and aspect parameters are used in the same
way as getConnLinks() operations use them. If meta is null, strConnection is empty or
strRole is empty, BON::Exception is thrown.

These operations can be used only for simple connections (i.e. connections having
exactly two connection ends), otherwise BON::Exception is thrown.

std::multiset<BON::ConnectionEnd> getDirectInConnEnds(const MON::Connection&
meta, bool bIncludeRefs = true, const MON::Aspect& aspect = MON::Aspect())
const;

std::multiset<BON::ConnectionEnd> getDirectInConnEnds(const std::string&
strConnection, bool bIncludeRefs = true, const MON::Aspect& aspect =
MON::Aspect()) const;

std::multiset<BON::ConnectionEnd> getDirectOutConnEnds(const
MON::Connection& meta, bool bIncludeRefs = true, const MON::Aspect& aspect =
MON::Aspect()) const;

std::multiset<BON::ConnectionEnd> getDirectOutConnEnds(const std::string&
strConnection, bool bIncludeRefs = true, const MON::Aspect& aspect =
MON::Aspect()) const;

These operations has the same functionality as getDirectConnEnds() has.
getDirectInConnEnds() supplies dst role, getDirectOutConnEnds() supplies src role
implicitly.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 197

void accept(BON::Visitor* pVisitor);

This is an “abstract” operation for BON::Visitor. This call is delegated to the
appropriate accept() of the object (i.e. considering the dynamic type of the object).

std::string getInfoString(Util::InfoOptions usOptions = Util::IO_None)
const;

std::string getInfoString(const std::set<Util::InfoOption>& setOptions)
const;

It returns a string describing the connection end. The details and the format can be
set be the options.

BON::ReferencePort
This class represents ports in model references (a.k.a. ReferencePortContainers).

Base Classes
Its base class is BON::ConnectionEnd.

Methods

BON::FCO getFCO() const;

Returns the fco referred by the reference-port.

BON::ReferencePortContainer getContainer() const;

Returns the container object in which the port resides.

BON::ReferencePort getParentPort() const;

If the container’s corresponding reference refers to a model, the result is null.
Otherwise the container’s reference refers to another reference. In this case the result
is a reference-port of that reference’s container. The returned reference-port points to
the same fco as this reference-port does.

std::set<BON::ReferencePort> getChildPorts() const;

The operation returns a set containing those reference-ports whose containers’
reference refers to this reference-port’s container’s reference. The returned reference-
ports point to the same fco as this reference port does.

std::set<BON::ReferencePort> getDescedantPorts() const;

The operation returns a set containing those reference-ports whose containers’
reference refers to this reference-port’s container’s reference directly or indirectly.
The returned reference-ports point to the same fco as this reference-port does.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 198

void accept(BON::Visitor* pVisitor);

This operation is the standard implementation for BON::Visitor. It calls the visitor
visitReferencePort() operation supplying the reference-port itself.

BON::FCO
This class corresponds to the IMgaFCO COM interface.

Base Classes
The class extends BON::Object and BON::ConnectionEnd classes.

Construction and Destruction

static BON::FCO attach(IMgaFCO* pFCO);

Creates a BON fco for the specified COM object.

Attributes

BON::FCOPtr getFCOI() const;

This call returns the corresponding IMgaFCO COM interface. This call is intended for
advanced users who are familiar with the architecture of BON2. It may be used for
special and/or unimplemented operations.

MON::FCO getFCOMeta() const;

Returns the appropriate MON::FCO of the fco.

MON::Containment getRole() const;

Returns the containment-role with which the fco is child of a model. If the fco is
child of a folder, then the result is null.

Methods

bool isPort(const MON::Aspect& meta = MOM::Aspect()) const;

bool isPort(const std::string& strAspect) const;

Returns true if the fco is a port of a model. If aspect is not null, then the result is true if
the model has aspect, and the port is visible in aspect.

bool isVisible(const MON::Aspect& meta, bool bAsContained = false) const;

bool isVisible (const std::string& strAspect, bool bAsContained = false)
const;

Returns true if the fco as child is visible in the model in aspect meta. If meta is null,
then BON::Exception is thrown. If bAsContained is true, the fco’s current containment
role otherwise all containment roles of the model and the fco are regarded

Generic Modeling Environment User's Manual Appendix C – BON and MON • 199

BON::TypeInhObject getTypeInhObject() const;

Returns the BON::TypeInhObject of the fco.

std::set<BON::ReferencePort> getReferencePorts(const MON::Aspect& meta =
MOM::Aspect()) const;

Returns all reference-ports of the fco. If meta is not null, only those ports are returned
which are visible in aspect meta.

std::set<BON::Attribute> getAttributes() const;

Returns a set of the attributes of the fco.

BON::Attribute getAttribute(const MON::Attribute& meta) const;

BON::Attribute getAttribute(const std::string& strAttribute) const;

Returns a BON::Attribute corresponding to meta or strAttribute. If meta is null, strAttribute
is empty, then BON::Exception is thrown.

BON::Model getParentModel(const MON::Model& meta = MON::Model()) const;

BON::Model getParentModel(const std::string& strModel) const;

The first operation returns the parent model. If the object is child of a folder, then the
result is null. If meta is not null, the result is null if the kind of the returned model
would not be meta. The second form of the call behaves the same way as the first
one. Empty string means that there is no kind restriction.

BON::Model getParentModelAs(const std::string& strRole) const;

Returns the parent model if the fco is child of a model with containment-role strRole,
otherwise the result is null.

std::set<BON::Set> getMemberOf(const MON::Set& meta = MON::Set(), const
MON::Aspect& aspect = MON::Aspect()) const;

std::set<BON::Set> getMemberOf(const std::string& strSet, const MON::Aspect&
aspect = MON::Aspect()) const;

Returns a set of those sets, which the fco is included into.

If meta is not null or strSet is not empty, then the kind of the returned sets has to be
the specified one. If aspect is not null, then the result set is filtered with aspect.

std::set<BON::Reference> getReferredBy(const MON::Reference& meta =
MON::Reference()) const;

std::set<BON::Reference> getReferredBy(const std::string& strReference)
const;

Returns a set of those references, which refer to the fco.

If meta is not null or strReference is not empty, then the kind of the returned references
has to be the specified one. If aspect is not null, then the result set is filtered with
aspect.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 200

BON::FCORegistryNode getRegistry() const;

Returns a special root registry-node, which can be used to obtain fco-specific pre-
defined registry values.

BON::FCO copy(const BON::Folder& parent);

BON::FCO copy(const BON::Model& parent, const std::string strRole = "");

The call copies the fco into specified parent as a child and returns the new one. If the
parent is a model, the containment role may be specified with strRole.

BON::FCO move(const BON::Folder& parent);

BON::FCO move(const BON::Model& parent, const std::string strRole = "");

The call moves the fco into specified parent returns the fco itself. If the parent is a
model, the containment role may be specified with strRole.

BON::Atom
This class corresponds to the IMgaAtom COM interface.

Base Classes
Its base class is BON::FCO.

Construction and Destruction

static BON::Atom attach(IMgaAtom* pAtom);

Creates a BON atom for the specified COM object.

static BON::Atom create(const BON::Folder& parent, const MON::Atom& meta =
MON::Atom());

static BON::Atom create(const BON::Folder& parent, const std::string&
strAtom);

static BON::Atom create(const BON::Model& parent, const MON::Atom& meta =
MON::Atom(), const std::string& strRole = "");

static BON::Atom create(const BON::Model& parent, const std::string&
strAtom, const std::string& strRole = "");

The methods create a new atom in the specified parent which kind will be meta or
strAtom. If strRole specified, the containment role name will be the same within the
model parent.

static BON::Atom create(const BON::Folder& parent, const BON::Atom&
baseType, bool bAsInstance = true);

static BON::Atom create(const BON::Model& parent, const BON::Atom& baseType,
bool bAsInstance = true, const std::string& strRole = "");

The methods derive a new atom from the specified basetype. If bAsInstance is true the
derived object will an instance of basetype, otherwise a type. If strRole specified, the
containment role name will be the same within the model parent.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 201

static BON::Atom createAs(const BON::Model& parent, const std::string&
strRole);

The methods create a new atom in the specified model parent whose containment role
is strRole. If the containment role is associated with no atoms in the model, an
exception is thrown.

Attributes

BON::AtomPtr getAtomI() const;

This call returns the corresponding IMgaAtom COM interface. This call is intended
for advanced users who are familiar with the architecture of BON2. It may be used
for special and/or unimplemented operations.

MON::Atom getAtomMeta() const;

Returns the appropriate MON::Atom of the atom.

Methods

BON::FCOExRegistryNode getRegistry() const;

Returns a special root registry-node, which can be used to obtain atom-specific pre-
defined registry values.

void accept(BON::Visitor* pVisitor);

This operation is the standard implementation for BON::Visitor. It calls the visitor
visitAtom() operation supplying the atom itself.

BON::Model
This class corresponds to the IMgaModel COM interface.

Base Classes
Its base class is BON::FCO.

Construction and Destruction

static BON::Model attach(IMgaModel* pModel);

Creates a BON model for the specified COM object.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 202

static BON::Model create(const BON::Folder& parent, const MON::Model& meta =
MON::Model());

static BON::Model create(const BON::Folder& parent, const std::string&
strModel);

static BON::Model create(const BON::Model& parent, const MON::Model& meta =
MON::Model(), const std::string& strRole = "");

static BON::Model create(const BON::Model& parent, const std::string&
strModel, const std::string& strRole = "");

The methods create a new model in the specified parent which kind will be meta or
strModel. If strRole specified, the containment role name will be the same within the
model parent.

static BON::Model create(const BON::Folder& parent, const BON::Model&
baseType, bool bAsInstance = true);

static BON::Model create(const BON::Model& parent, const BON::Model&
baseType, bool bAsInstance = true, const std::string& strRole = "");

The methods derive a new model from the specified basetype. If bAsInstance is true
the derived object will an instance of basetype, otherwise a type. If strRole specified,
the containment role name will be the same within the model parent.

static BON::Model createAs(const BON::Model& parent, const std::string&
strRole);

The methods create a new model in the specified model parent whose containment
role is strRole. If the containment role is associated with no models in parent, an
exception is thrown.

Attributes

BON::ModelPtr getModelI() const;

This call returns the corresponding IMgaModel COM interface. This call is intended
for advanced users who are familiar with the architecture of BON2. It may be used
for special and/or unimplemented operations.

MON::Model getModelMeta() const;

Returns the appropriate MON::Model of the model.

Methods

std::set<BON::FCO> getChildFCOs(const MON::FCO& meta = MON::FCO(), const
MON::Aspect& aspect = MON::Aspect()) const;

std::set<BON::FCO> getChildFCOs(const std::string& strFCO, const
MON::Aspect& aspect = MON::Aspect()) const;

The operations return a set containing the child fcos of the model.

If meta is not null or strFCO is specified (i.e. not empty string), only those fcos are
returned which satisfy the kind restriction. If aspect is not null, then the result set is
filtered with aspect.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 203

std::set<BON::FCO> getChildFCOsAs(const std::string& strRole, const
MON::Aspect& aspect = MON::Aspect()) const;

The operation returns a set containing the child fcos which reside in the model with
containment-role strRole.

If aspect is not null, then the result set is filtered with aspect.

std::set<BON::Atom> getChildAtoms(const MON::Aspect& aspect = MON::Aspect()
) const;

std::set<BON::Model> getChildModels(const MON::Aspect& aspect =
MON::Aspect()) const;

std::set<BON::Set> getChildSets(const MON::Aspect& aspect = MON::Aspect())
const;

std::set<BON::Reference> getChildReferences(const MON::Aspect& aspect =
MON::Aspect()) const;

std::set<BON::Connection> getChildConnections(const MON::Aspect& aspect =
MON::Aspect()) const;

These calls return a set containing the child fcos whose stereotype is defined in the
name of the operation.

If aspect is not null, then the result set is filtered with aspect.

BON::Object findByPath(const std::string& strPath, const std::string&
strDelimiter = "/", bool bReverseOrder = false);

The call returns an object whose path is strPath. If there is such an object, null is
returned. The direction of the path and the separator can be specified with
bReverseOrder and strDelimiter.

BON::ModelRegistryNode getRegistry() const;

Returns a special root registry-node, which can be used to obtain model-specific pre-
defined registry values.

BON::Connection
This class corresponds to the IMgaConnection COM interface.

Base Classes
Its base class is BON::FCO.

Construction and Destruction

static BON::Connection attach(IMgaConnection* pConnection);

Creates a BON connection for the specified COM object.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 204

static BON::Connection create(const BON::Model& parent, const
std::set<BON::Connection::Pair>& ends, const MON::Connection& meta =
MON::Connection(), const std::string& strRole = "");

static BON::Connection create(const BON::Model& parent, const
std::set<BON::Connection::Pair>& ends, const std::string& strConnection,
const std::string& strRole = "");

static BON::Connection create(const BON::Model& parent, const
BON::ConnectionEnd& srcEnd, const BON::ConnectionEnd& dstEnd, const
MON::Connection& meta = MON::Connection(), const std::string& strRole = "");

static BON::Connection create(const BON::Model& parent, const
BON::ConnectionEnd& srcEnd, const BON::ConnectionEnd& dstEnd, const
std::string& strConnection, const std::string& strRole = "");

The methods create a new connection according to the specified meta or
strConnection. The srcEnd and dstEnd provide the source and the destination for the
connection and they must not be null. Another form of the methods requires a set of
pairs of the connection role name and the connection end.

static BON::Connection createAs(const BON::Model& parent, const
std::set<BON::Connection::Pair>& ends, const std::string& strRole);

static BON::Connection createAs(const BON::Model& parent, const
BON::ConnectionEnd& srcEnd, const BON::ConnectionEnd& dstEnd, const
std::string& strRole);

The methods create a new connection in parent as a child. If strRole is an empty
string and the model cannot contain connections, or connections with the specified
containment role strRole cannot be placed into the model, exception is thrown. The
srcEnd and dstEnd provide the source and the destination for the connection and they
must not be null. Another form of the method requires a set of pairs of the connection
role name and the connection end.

Attributes

BON::ConnectionPtr getConnectionI() const;

This call returns the corresponding IMgaConnection COM interface. This call is
intended for advanced users who are familiar with the architecture of BON2. It may
be used for special and/or unimplemented operations.

MON::Connection getConnectionMeta() const;

Returns the appropriate MON::Connection of the connection.

Methods

std::multiset<BON::ConnectionEnd> getConnEnds(const MON::FCO& meta =
MON::FCO()) const;

std::multiset<BON::ConnectionEnd> getConnEnds(const std::string& strFCO)
const;

Returns a set containing the connection-ends of the connection.

If meta is not null or strFCO is not empty, then the kind of the fcos or the fcos referred
by the reference-ports must be the specified one.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 205

BON::ConnectionEnd getConnEnd(const std::string& strRole, const MON::FCO&
meta = MON::FCO()) const;

BON::ConnectionEnd getConnEnd(const std::string& strRole, const std::string&
strFCO) const;

Returns the connection-end of the connection, which has the connection-role strRole.
If strRole is empty, then BON::Exception is thrown. If meta is not null or strFCO is not
empty, then the kind of the fco or the fco referred by the reference-port must be the
specified one.

BON::ConnectionEnd getSrc(const MON::FCO& meta = MON::FCO()) const;

BON::ConnectionEnd getSrc(const std::string& strFCO) const;

BON::ConnectionEnd getDst(const MON::FCO& meta = MON::FCO()) const;

BON::ConnectionEnd getDst(const std::string& strFCO) const;

These operations has the same functionality as getConnEnd() has. getSrc() supplies
src connection-role, getDst() supplies dst connection-role implicitly.

BON::ConnectionRegistryNode getRegistry() const;

Returns a special root registry-node, which can be used to obtain connection-specific
pre-defined registry values.

BON::Set
This class corresponds to the IMgaSet COM interface.

Base Classes
Its base class is BON::FCO.

Construction and Destruction

static BON::Set attach(IMgaSet* pSet);

Creates a BON set for the specified COM object.

static BON::Set create(const BON::Folder& parent, const MON::Set& meta =
MON::Set());

static BON::Set create(const BON::Folder& parent, const std::string& strSet
);

static BON::Set create(const BON::Model& parent, const MON::Set& meta =
MON::Set(), const std::string& strRole = "");

static BON::Set create(const BON::Model& parent, const std::string& strSet,
const std::string& strRole = "");

The methods create a new set in the specified parent which kind will be meta or
strSet. If strRole specified, the containment role name will be the same within the
model parent.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 206

static BON::Set create(const BON::Folder& parent, const BON::Set& baseType,
bool bAsInstance = true);

static BON::Set create(const BON::Model& parent, const BON::Set& baseType,
bool bAsInstance = true, const std::string& strRole = "");

The methods derive a new set from the specified basetype. If bAsInstance is true the
derived object will an instance of basetype, otherwise a type. If strRole specified, the
containment role name will be the same within the model parent.

static BON::Set createAs(const BON::Model& parent, const std::string&
strRole);

The methods create a new set in the specified model parent whose containment role is
strRole. If the containment role cannot be associated with any sets in parent, an
exception is thrown.

Attributes

BON::SetPtr getSetI() const;

This call returns the corresponding IMgaSet COM interface. This call is intended for
advanced users who are familiar with the architecture of BON2. It may be used for
special and/or unimplemented operations.

MON::Set getSetMeta() const;

Returns the appropriate MON::Set of the set.

Methods

std::set<BON::FCO> getMembers(const MON::FCO& meta = MON::FCO(), const
MON::Aspect& aspect = MON::Aspect()) const;

std::set<BON::FCO> getMembers(const std::string& strFCO, const MON::Aspect&
aspect = MON::Aspect()) const;

These calls return a set containing fcos which are members of the set.

If meta is not null or strFCO is not empty, then the returned fcos’ kind is the specified
one.

If aspect is not null, then the result set is filtered with aspect.

void addMember(const BON::FCO& fco);

It adds fco into the set as a new member. If the set already contains the fco, nothing
happens.

void removeMember(const BON::FCO& fco);

It removes fco from the set. If the set does not contain the fco, nothing happens.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 207

BON::FCOExRegistryNode getRegistry() const;

Returns a special root registry-node, which can be used to obtain set-specific pre-
defined registry values.

BON::Reference
This class corresponds to the IMgaReference COM interface.

Base Classes
Its base class is BON::FCO.

Construction and Destruction

static BON::Reference attach(IMgaReference* pReference);

Creates a BON reference for the specified COM object.

static BON::Reference create(const BON::Folder& parent, const
MON::Reference& meta = MON::Reference());

static BON::Reference create(const BON::Folder& parent, const std::string&
strReference);

static BON::Reference create(const BON::Model& parent, const MON::Reference&
meta = MON::Reference(), const std::string& strRole = "");

static BON::Reference create(const BON::Model& parent, const std::string&
strReference, const std::string& strRole = "");

The methods create a new null-reference in the specified parent which kind will be
meta or strReference. If strRole specified, the containment role name will be the same
within the model parent.

static BON::Reference create(const BON::Folder& parent, const
BON::Reference& baseType, bool bAsInstance = true);

static BON::Reference create(const BON::Model& parent, const BON::Reference&
baseType, bool bAsInstance = true, const std::string& strRole = "");

The methods derive a new null-reference from the specified basetype. If bAsInstance
is true the derived object will an instance of basetype, otherwise a type. If strRole
specified, the containment role name will be the same within the model parent.

static BON::Reference createAs(const BON::Model& parent, const std::string&
strRole);

The methods create a new set in the specified model parent whose containment role is
strRole. If the containment role cannot be associated with any references in parent, an
exception is thrown.

Attributes

Generic Modeling Environment User's Manual Appendix C – BON and MON • 208

BON::ReferencePtr getReferenceI() const;

This call returns the corresponding IMgaReference COM interface. This call is
intended for advanced users who are familiar with the architecture of BON2. It may
be used for special and/or unimplemented operations.

MON::Reference getReferenceMeta() const;

Returns the appropriate MON::Reference of the reference.

Methods

BON::FCO getReferred(const MON::FCO& meta = MON::FCO()) const;

BON::FCO getReferred (const std::string& strFCO) const;

Returns the fco referred by the reference.

If meta is not null or strFCO is not empty, then the returned fco’s kind is the specified
one.

void setReferred(const BON::FCO& fco);

It sets fco to the referred object by the reference. If fco is null, then the reference will
refer to null.

BON::ReferencePortContainer getRefPortContainer() const;

Returns the appropriate reference-port container if the reference refers to a model
directly or indirectly, otherwise the result is null.

BON::FCOExRegistryNode getRegistry() const;

Returns a special root registry-node, which can be used to obtain reference-specific
pre-defined registry values.

BON::ReferencePortContainer
This class represents the interface of those references, which currently refer to a
model directly or indirectly.

Base Classes
There is no base class.

Methods

BON::Project getProject() const;

It returns the project to which the reference-port container belongs.

BON::Reference getReference() const;

Returns the corresponding reference.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 209

std::set<BON::ReferencePort> getReferencePorts() const;

Returns the set of the contained reference-ports.

BON::ReferencePort getReferencePort(const BON::FCO& fco) const;

Returns the reference-port which points to the specified fco. If fco is null,
BON::Exception is thrown.

BON::TypeInhObject
This class is the base class of BON::Type and BON::Instance classes. For each fco in a
project there is a BON::Type or BON::Instance object with which the user can obtain
information about the fco regarding the type-inheritance.

Base Classes
There is no base class.

Attributes

bool isInstance() const;

Returns true if the object’s dynamic type is BON::Instance.

Methods

BON::Project getProject() const;

It returns the project to which the type-inheritance object belongs.

BON::FCO getFCO() const;

Returns the corresponding fco.

BON::Type getType() const;

Returns the appropriate type for this type-inheritance object from which this object
derives. If the type-inheritance object corresponds to an fco, which is a type and it
does not have base-type, then null is returned.

BON::Instance
This class corresponds to type-inheritance instances.

Base Classes
Its base class is BON::TypeInhObject.

BON::Type
This class corresponds to type-inheritance types.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 210

Base Classes
Its base class is BON::TypeInhObject.

Methods

std::set<BON::TypeInhObject> getDerivedObjects() const;

It returns the set containing all derived type-inheritance objects of the type (i.e. sub-
types and instances).

std::set<BON::Type> getSubTypes() const;

It returns the set containing all direct sub-types of the type.

std::set<BON::Instance> getInstances() const;

It returns the set containing all direct instances of the type.

BON::Attribute
This class corresponds to the IMgaAttribute COM interface.

Base Classes
There is no base class.

Attributes

BON::AttributePtr getAttributeI() const;

This call returns the corresponding IMgaAttribute COM interface. This call is intended
for advanced users who are familiar with the architecture of BON2. It may be used
for special and/or unimplemented operations.

MON::Attribute getAttributeMeta() const;

Returns the appropriate MON::Attribute of the attribute.

BON::AttributeStatus getStatus() const;

Returns the status of the value of the attribute.

If it is BON::AS_Here, then the value is set in the attribute directly. If it is
BON::AS_Meta, the value is the default value defined in the corresponding
MON::Attribute. If the returned value equals to or is greater than 1, then it is inherited
from an fco from which the attribute’s fco derives directly or indirectly.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 211

Util::Variant getValue() const;

long getIntegerValue(bool bTypeTolerant = true) const;

bool getBooleanValue(bool bTypeTolerant = true) const;

double getRealValue(bool bTypeTolerant = true) const;

std::string getStringValue(bool bTypeTolerant = true) const;

These operations returns the value set in the attribute directly or indirectly.

Those methods, which have specific type, can be used to obtain the typed value
simply. If bTypeTolerant is false and the type of the value mismatches the requested,
BON::Exception is thrown, otherwise if the types are not the same, the methods try to
convert the value to the requested type.

void setValue(const Util::Variant& value, bool bTypeTolerant = true);

void setIntegerValue(long lValue, bool bTypeTolerant = true);

void setBooleanValue(bool bValue, bool bTypeTolerant = true);

void setRealValue(double dValue, bool bTypeTolerant = true);

void setStringValue(const std::string& strValue, bool bTypeTolerant = true
);

These operations set the value directly.

Those methods, which have specific type, can be used to set the typed value simply.
If bTypeTolerant is false and the type of the value mismatches the type of the supplied
one, BON::Exception is thrown, otherwise if the types are not the same, the methods
try to convert the value to the type of the attribute.

bool isUndefined() const;

Returns true if the value is undefined.

void clear();

Clears the value directly (i.e. set the value to undefined). It means that the value will
be inherited (i.e. the value is set indirectly)

Methods

BON::Project getProject() const;

It returns the project to which the attribute belongs.

BON::FCO getFCO() const;

It returns the fco in which the attribute resides.

BON::RegistryNode
This class corresponds to the IMgaRegNode COM interface, except of the root registry
node, whose COM interface pointer is null. Root registry nodes for objects are
introduced to separate the BON::RegistryNode functionality from BON::Object.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 212

Base Classes
There is no base class.

Attributes

BON::RegNodePtr getRegNodeI() const;

This call returns the corresponding IMgaRegNode COM interface. This call is
intended for advanced users who are familiar with the architecture of BON2. It may
be used for special and/or unimplemented operations. In case of root this pointer is
null.

bool isRoot() const;

Returns true, if the node is root.

std::string getName() const;

Returns the name of the registry node, if the node is root, it is an empty string.

BON::RegistryNodeStatus getStatus() const;

Returns the status of the value. The result is similar to BON::Attribute::getStatus().

std::string getValue() const;

long getIntegerValue() const;

double getRealValue() const;

bool getBoolValue() const;

Returns the value of the registry node.

std::string setValue(const std::string& strValue);

long setIntegerValue(long lValue);

double setRealValue(double dValue);

bool setBoolValue(bool bvalue);

The operation sets the registry value.

void clear();

It sets the value to undefined.

Methods

BON::Project getProject() const;

Returns the project to which the node belongs.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 213

BON::Object getObject() const;

Returns the object to whose registry tree the node resides in.

std::string getPath() const;

Returns the path of the registry node.

std::string getValueByPath(const std::string& strPath) const;

It returns the value of the appropriate descendant registry node. strPath must be a
relative path to this node.

void setValueByPath(const std::string& strPath, const std::string& strValue
);

It sets the value of the appropriate descendant registry node. strPath must be a
relative path to this node.

std::set<BON::RegistryNode> getChildren(bool bVirtualsAlso = false) const;

BON::RegistryNode getChild(const std::string& strName) const;

The first operation returns a set containing all children of the node. If bVirtualsAlso is
true, it includes those registry nodes as well whose value’s status is not
BON::RNS_Here.

BON::RegistryNode getDescendantByPath(const std::string& strPath) const;

Returns a registry node by strPath, which is the child of this node directly or
indirectly. strPath must be a relative path to this node.

void removeTree();

It clears and removes all descendant registry nodes of this node including itself.

BON::FCORegistryNode
This class is an extension in order to introduce a easy-to-use interface for those
registry-values, which are predefined in GME and are associated with fcos. Although
the class inherits from BON::RegistryNode, only the root node support this interface.

Base Classes
The base class is BON::RegistryNode.

Methods

COLORREF getColor() const;

void setColor(COLORREF color);

Returns and sets the color of the fco.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 214

COLORREF getNameColor() const;

void setNameColor(COLORREF color);

Returns and sets the color of the name of the fco.

bool getNameEnabled() const;

void setNameEnabled(bool bEnabled);

Returns true if the name of the fco is displayed in the model editor window. The
second operation sets the name visibility.

std::string getHelpURL() const;

void setHelpURL(const std::string& strURL);

Returns and sets the Help URL.

std::set<BON::AutoRouterPref> getInAutoRouterPref() const;

void setInAutoRouterPref(const std::set<BON::AutoRouterPref>& setPrefs);

Returns and sets the AutoRouter preference of the fco for those connections whose
source connection-end is the fco.

std::set<BON::AutoRouterPref> getOutAutoRouterPref() const;

void setOutAutoRouterPref(const std::set<BON::AutoRouterPref>& setPrefs);

Returns and sets the AutoRouter preference of the fco for those connections whose
destination connection-end is the fco.

BON::FCOExRegistryNode
This class represents the registry node for atoms, models, sets and references.

Base Classes
The base class is BON::FCORegistryNode.

Methods

BON::Point getLocation(const MON::Aspect& aspect = MON::Aspect()) const;

BON::Point getLocation(const std::string& strAspect) const;

void setLocation(const BON::Point& point, const MON::Aspect& aspect =
MON::Aspect());

void setLocation(const BON::Point& point, const std::string& strAspect);

Return and sets the location of the fco considering the passed aspect if it is not null. If
aspect is null or strAspect is empty, then the first operation returns the first valid
location regarding the aspects, the setter method sets the passed co-ordinates for all
aspects.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 215

BON::NamePosition getNamePosition() const;

void setNamePosition(BON::NamePosition pos);

Returns and sets the enumeration value which describes where the name of the fco is
displayed.

unsigned short getNameWrap() const;

void setNameWrap(unsigned short usWrap);

Returns and sets the number of characters which is the base (+/-5 char) of the name
wrapping. Value 0 means that the name wrapping is off.

bool getHotspotEnabled() const;

void setHotspotEnabled(bool bEnabled);

The first operation returns true if hotspots are shown for the fco. The second one sets
this value.

bool getTypeNameEnabled() const;

void setTypeNameEnabled(bool bEnabled);

Returns and set the flag for displaying the name of the type. This type is displayed
only for instances in case this flag is true.

bool getTypeInfoEnabled() const;

void setTypeInfoEnabled(bool bEnabled);

Returns and sets the type has to be shown. For types T, for Subtypes S and for
Instances I letter is displayed.

std::string getDecorator() const;

void setDecorator(const std::string& strName);

Returns and sets the COM descriptor of the decorator assigned to this fco.

std::string getIcon() const;

void setIcon(const std::string& strName) const;

Returns and sets the filename of the icon of the fco.

std::string getPortIcon() const;

void setPortIcon(const std::string& strName) const;

Returns and sets the filename of the port-icon of the fco.

std::string getSubTypeIcon() const;

void setSubTypeIcon(const std::string& strName) const;

Returns and sets the filename of the icon of the fco, which is used only for subtypes.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 216

std::string getInstanceIcon() const;

void setInstanceIcon(const std::string& strName) const;

Returns and sets the filename of the icon of the fco, which is used only for isntances.

BON::ModelRegistryNode
This class represents the registry node for models only.

Base Classes
The base class is BON::FCOExRegistryNode.

Methods

COLORREF getBorderColor() const;

void setBorderColor(COLORREF color);

Returns and sets the border color of the model.

COLORREF getBackgroundColor() const;

void setBackgroundColor(COLORREF color);

Returns and sets the background color of the model with which the model editor is
filled when the model is open.

COLORREF getPortNameColor() const;

void setPortNameColor(COLORREF color);

Returns and set the color of the label of the ports.

BON::ConnectionRegistryNode
This class represents the registry node for connections.

Base Classes
The base class is BON::FCORegistryNode.

Methods

BON::LineType getLineType() const;

void setLineType(BON::LineType eType);

Returns and set the line type of the connection with which it is rendered.

BON::LineEndType getSrcLineEndType() const;

void setSrcLineEndType(BON::LineEndType eType);

Returns and sets the decoration of the source of the connection.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 217

BON::LineEndType getDstLineEndType() const;

void setDstLineEndType(BON::LineEndType eType);

Returns and sets the decoration of the destination of the connection.

std::string getLabel() const;

void setLabel(const std::string& strFormat);

Returns and sets the label format string of the connection.

std::string getSrcLabel1() const;

void setSrcLabel1(const std::string& strFormat);

Returns and sets the primary label of the source connection-end. In default this
corresponds to the connection-role name.

std::string getSrcLabel2() const;

void setSrcLabel2(const std::string& strFormat);

Returns and sets the secondary label of the source connection-end. In default this
corresponds to the cardinality number.

std::string getDstLabel1() const;

void setDstLabel1(const std::string& strFormat);

Returns and sets the secondary label of the destination connection-end. In default this
corresponds to the connection-role name.

std::string getDstLabel2() const;

void setDstLabel2(const std::string& strFormat);

Returns and sets the secondary label of the destination connection-end. In default this
corresponds to the cardinality number.

BON::Event
This class wraps the events sent by the Mga Layer.

Base Classes
There is no base class.

Attributes

MON::ObjectEventType getType() const;

Returns the type of the event.

MON::Object getContext() const;

Returns the context of the event.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 218

Methods

std::string getInfoString(Util::InfoOptions usOptions = Util::IO_None)
const;

std::string getInfoString(std::set<Util::InfoOption> setOptions) const;

They return a user-friendly description about the event.

BON::EventListener
This class is intended for user specific event handling.

Base Classes
There is no base class.

Attributes

virtual bool isActive() const;

Returns true if the listener handles events. The operation may be overridden by the
user. In default it returns true.

virtual MON::ObjectEventTypes getAssignments() const;

Returns the OR-ed event types to which the listener reacts. In default it return
MON::OET_None, therefore it must be overridden by user.

Methods

virtual void eventPerformed(const BON::Event& event) const;

The user has to override this operation to implement the specific behavior handling
the event.

BON::EventListenerPool
This class is intended to implement a pool for event listeners and predefined
dispatching of events.

Base Classes
There is no base class.

Methods

void performEvent(const BON::Event& event) const;

The event pool dispatches the supplied event to the stored active event listeners.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 219

void addListener(BON::EventListener* pListener);

It adds pListener to the stored listeners.

void removeListener(BON::EventListener* pListener);

It removes pListener from the stored listeners.

BON::Visitor
This class is the standard base class of visitors.

Base Classes
There is no base class.

Methods

void visitFolder(const Folder& folder);

void visitAtom(const Atom& atom);

void visitModel(const Model& model);

void visitConnection(const Connection& connection);

void visitSet(const Set& set);

void visitReference(const Reference& reference);

void visitReferencePort(const ReferencePort& port);

These methods are called by the appropriate accept() operations. Here is the template
method design pattern is used. For example visitReference() calls the following
operations which may be overridden by the user: visitObjectImpl(),
visitConnectionEndImpl(), visitFCOImpl(), visitReferenceImpl().

virtual void visitObjectImpl(const Object& object) { }

virtual void visitConnectionEndImpl(const ConnectionEnd& end) { }

virtual void visitFCOImpl(const FCO& fco) { }

virtual void visitFolderImpl(const Folder& folder) { }

virtual void visitAtomImpl(const Atom& atom) { }

virtual void visitModelImpl(const Model& model) { }

virtual void visitConnectionImpl(const Connection& connection) { }

virtual void visitSetImpl(const Set& set) { }

virtual void visitReferenceImpl(const Reference& reference) { }

virtual void visitReferencePortImpl(const ReferencePort& port) { }

In these protected operations the user may implement specific behaviour. In default
the operations do nothing. With the “abstract” visit operations (visitObjectImpl(),
visitConnectionEndImpl(), visitFCOImpl()) common behaviour may be implemented for
the derived classes.

Generic Modeling Environment User's Manual Appendix C – BON and MON • 220

Appendix D – References

Model Integrated Computing References
The following references provide detailed information on Model Integrated
Computing technology, development, and application:

S. White, et al.: “Systems Engineering of Computer-Based Systems", IEEE
Computer, pp. 54-65, November 1993.

J. Sztipanovits, et al.: “MULTIGRAPH: An Architecture for Model-Integrated
Computing,” Proceedings of the IEEE ICECCS’95, pp. 361-368, Nov. 1995.
D. Oliver, T. Kelliher, J. Keegan, Jr., Engineering Complex Systems with Models
and Objects. New York: McGraw-Hill, 1997.

J. Sztipanovits, “Engineering of Computer-Based Systems: An Emerging
Discipline,” Proceedings of the IEEE ECBS’98 Conference, 1998.

Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom
G., Sprinkle J., Volgyesi P.: The Generic Modeling Environment, Workshop on
Intelligent Signal Processing, accepted, Budapest, Hungary, May 17, 2001

Ledeczi A., Nordstrom G., Karsai G., Volgyesi P., Maroti M.: On Metamodel
Composition, IEEE CCA 2001, CD-Rom, Mexico City, Mexico, September 5, 2001

Ledeczi, et al., “Metaprogrammable Toolkit for Model-Integrated Computing,"
Proceedings of the IEEE ECBS’99 Conference, 1999.

Additionally, many other MIC-related journal articles, conferences papers, and other
reference materials are available from the ISIS web site, accessible via the following
URL:

http://www.isis.vanderbilt.edu/

Generic Modeling Environment User's Manual Appendix D – References • 221

Glossary of Terms

aspects
The parts contained within a GME model are partitioned into viewable groups called
aspects. Parts may be added or deleted only from their primary aspects, but may be
visible in many secondary aspects.

CBS
Computer Based System

Compound model
A model that can contain other objects

connection
A line with a particular appearance and directionality joining two atomic parts or
parts contained in models. In the GME, connections can have domain-specific
attributes (accessed by right-clicking anywhere on the connection).

CORBA
Common Object Request Broker Architecture

COTS
Commercial off-the-shelf software

DSME
Domain Specific MIPS Environment

GME
See Generic Model Environment

GOTS
Government off-the-shelf software

Generic Modeling Environment User's Manual Glossary of Terms • 222

Generic Modeling Environment
A configurable, multi-aspect, graphical modeling environment used in the
MultiGraph Architecture

interpreters
See Model interpreters

Link
See Link parts

Link parts
Atomic parts contained within a model that are visible, and can participate in
connections, when the container model appears inside other models.

MCL
MGA constraint language. A subset of OCL, with MGA-specific additions.

Metamodel
A model that contains the specifications of a domain-specific MIPS environment
(DSME). Metamodels contain syntactic, semantic, and presentation specifications of
the target DSME.

metamodeling environment
A domain-specific MIPS environment (DSME) configured to allow the specification
and synthesis of other DSMEs.

MGA
See MultiGraph Architecture

MGK
MultiGraph Kernel. Middleware designed to support real-time MultiGraph execution
environments

MIC
Model Integrated Computing

MIPS
Model Integrated Program Synthesis

Model interpreters
High-level code associated with a given modeling paradigm, used to translate
information found in the graphical models into forms (executable code, data streams,
etc.) useful in the domain being modeled.

Generic Modeling Environment User's Manual Glossary of Terms • 223

Model translators
See Model interpreters

modeling paradigm
The syntactic, semantic, and presentation information necessary to create models of
systems within a particular domain.

MultiGraph Architecture
A toolset for creating domain-specific modeling environments.

OCL
Object Constraint Language (a companion language to the UML)

paradigm
See modeling paradigm

POSIX
Portable Operating System Interface, An IEEE standard designed to facilitate
application portability

Primitive model
A model that cannot contain other models

Reference parts
Objects that refer to (i.e. point to) other objects (atomic parts or models)

References
See Reference parts

Generic Modeling Environment User's Manual Glossary of Terms • 224

	What is new
	What is new in version 6.0
	What is new in version 5.0
	What is new in version 4.0
	What is new in version 3.0

	Introduction
	Modeling Concepts Overview
	Model-Integrated Program Synthesis
	The MultiGraph Architecture
	The Modeling Paradigm
	Metamodels and Modeling Environment Synthesis

	The Generic Modeling Environment
	GME 6 Main Editing Window
	GME Concepts
	Defining the Modeling Paradigm
	Models
	Atoms
	Model Hierarchy
	 References

	Connections and links
	Sets
	Aspects
	Attributes
	Preferences

	Using GME 6
	GME 6 Interfaces
	The Part Browser
	The Attribute Browser
	The Model Browser
	Model Browser navigation
	Model Browser and Interoperation
	Locking

	The Model Editor
	The Editing Window
	GME Menus

	Annotations
	Creating Annotations
	Editing Annotations
	Implementation issues

	Managing Paradigms
	New Project

	Editor Operations
	Editing Modes
	Normal Mode
	Add Connection Mode
	Remove Connection Mode
	Set Mode
	Zoom Mode
	Visualization Mode

	Miscellaneous operations

	Help System
	Searching objects
	Types of the search
	General Search
	Meta-Kind Search
	Special Reference Search

	Regular expressions
	Defaults

	Scripting in GME

	Type Inheritance
	Type Inheritance Concepts
	Attributes and Preferences
	References and Sets
	Decorator enhancements

	Libraries
	Model library support

	Decorators
	Introduction
	The IMgaDecorator interface

	Dir
	IMgaDecorator Functions
	Using the Decorator skeleton

	Assigning decorators to objects

	Metamodeling Environment
	Introduction
	Step by step guide to basic metamodeling
	Paradigm
	Folder
	How to specify containment for a Folder

	FCO
	How to create an FCO
	How to specify an Attribute for an FCO

	Atom
	How to set that an Atom is a Port

	Reference
	How to specify containment of a Reference in a Model
	How to specify the FCO to which a Reference refers

	Connection
	How to specify a connection between two Atoms

	Set
	How to specify what FCO-s a Set “Owns”

	Model
	How to contain a Model (Model-1) in a Model (Model-0)
	How to contain an Atom in a Model

	Attributes
	Inheritance
	How to Specify Inheritance

	Aspect

	Composing Metamodels
	Operators
	Equivalence operator
	Implementation inheritance operator
	Interface inheritance operator
	Aspect equivalence
	Folder equivalence

	Generating the Target Modeling Paradigm
	Aspect Mapping

	Attribute Guide
	1st source label
	2nd source label
	1st destination label
	2nd destination label
	Abstract
	Author information
	Cardinality
	Color
	Composition role
	Constraint Equation
	Context
	Data type
	Decorator
	Default = ‘True’
	Default parameters
	Default menu item
	Description
	Displayed name
	Field default
	General preferences
	Global scope
	Icon
	In root folder
	Line end
	Line start
	Line type
	Number of lines
	Menu items
	Name position
	Object is a port
	On…
	Port icon
	Priority (1=High)
	Prompt
	Return type
	Rolename
	Stereotype
	Type displayed
	Typeinfo displayed
	Version information
	Viewable

	Semantics Guide to Metamodeling

	High-Level Component Interface
	Introduction to the Component Interface
	Builder Object Network version 1.0
	What Does the BON Do?
	Component Interface Entry Point
	Component Interface
	Example
	Extending the Component Interface
	Example

	 Meta Object Network
	What is MON?
	Basic MON Classes
	Meta-Kinds in MON
	Specific GME Concepts
	How to Use MON?

	 Builder Object Network version 2.0
	Architecture of BON2
	Wrapper Classes
	Objects’ Lifecycle in Components
	Objects in Add-ons and in Interpreters
	Aggregated Reference-counting

	Extending Interpreters
	Add-ons and Events
	BON Extension Classes
	Realize the Implementation Class
	Create the Wrapper Class
	Assigning BON Extensions
	Multiple Inheritance

	Essential Classes of BON2
	GME Metakinds in the Project
	ConnectionEnds and ReferencePorts
	ReferencePort and Its Container
	Relationship Between ReferencePorts
	ConnectionEnd and Connection

	Type Inheritance in BON2
	Registry, Attributes and Object Preferences

	How to create a new component project
	Extending the Component Interface using the BON Extender interpreter
	Naming convention used
	Ordering
	Limited extension

	Constraint Manager
	Features of the new Constraint Manager
	Standard OCL features
	New and Improved features in GME 6
	Limitations and Special Issues
	Inheritance at Meta-Modeling Time
	Retained Meta-Kind Features
	Special Features of Predefined OCL Types
	Multiplicity
	Enable-Disable Constraints
	Constraints at Modeling Time and In Libraries

	Types and Constraints (Expressions)
	Type Resolution
	Invariants
	Constraint Definitions

	Using Constraints in GME
	Constraints defined by the Paradigm
	Constraint Definitions (Functions)
	Syntax and semantic errors
	Evaluating the constraints
	Altering the evaluation process
	Short-circuit evaluation
	Evaluation Tracking
	Termination of evaluation
	Depth of on-demand evaluation

	Run-time exceptions and constraint violations
	Compact view
	Detailed View

	Constraints in the model
	Constraints’ types
	Constraint Browser
	Add and Remove constraints
	Enable and disable constraints
	Constraints in a library

	Appendix A - Database Setup
	GME 6 Database Support
	Server side installation
	Client side setup
	Preparing GME for multiuser access
	Using GME with the ODBC backend

	Appendix B – OCL and GME
	OCL Language
	Type Conformance
	Context of a Constraint
	Types of Constraints (Expressions)
	Invariants
	Pre-conditions
	Post-conditions
	Attribute Definition
	Method Definition

	Common OCL Expressions
	Type casting
	Undefined
	Equality and Identity
	Literals
	Let expression
	If Then Else Expression
	Iterators

	 Type Related Expressions
	Operators

	Operators
	Functions
	Attributes
	Methods
	Associations
	Resolution Rules
	Implicit Variables
	 Expression Resolution

	 Predefined OCL Types
	ocl::Any
	Aliases, Supertypes
	Operators
	Methods

	ocl::String
	Aliases, Supertypes
	Operators
	Attributes
	Methods

	 ocl::Enumeration
	Aliases, Supertypes
	Operators

	ocl::Boolean
	Aliases, Supertypes
	Operators

	ocl::Real
	Aliases, Supertypes
	Operators
	Functions
	Methods

	ocl::Integer
	Aliases, Supertypes
	Operators
	Functions
	Methods

	ocl::Type
	Aliases, Supertypes
	Operators

	ocl::Collection
	Aliases, Supertypes
	Attributes
	Methods
	Iterators

	ocl::Set
	Aliases, Supertypes
	Operators
	Methods
	Iterators

	ocl::Bag
	Aliases, Supertypes
	Operators
	Methods
	Iterators

	ocl::Sequence
	Aliases, Supertypes
	Operators
	Methods
	Iterators

	GME Kinds and Meta-Kinds
	gme::Object
	Aliases, Super-Meta-Kind
	Operators
	Attributes
	Methods

	gme::Folder
	Aliases, Super-Meta-Kind
	Method

	gme::FCO
	Aliases, Super-Meta-Type
	Attributes
	Methods

	gme::Connection
	Aliases, Super-Meta-Type
	Methods

	gme::Reference
	Aliases, Super-Meta-Type
	Methods

	gme::Set
	Aliases, Super-Meta-Type
	Methods

	gme::Atom
	Aliases, Super-Meta-Type

	gme::Model
	Aliases, Super-Meta-Type
	Methods

	gme::Project
	Aliases, Supertypes
	Operators
	Attributes
	Methods

	gme::RootFolder
	Aliases, Supertypes, Meta-Type

	gme::ConnectionPoint
	Aliases, Supertypes
	Operators
	Attributes
	Methods

	Appendix C – BON and MON
	Meta Object Network Classes
	MON::Project
	Base Classes
	Attributes
	Methods

	MON::MetaObject
	Base Classes
	Attributes
	Methods

	MON::Object
	Base Classes
	Methods

	MON::Folder
	Base Classes
	Attributes
	Methods

	MON::FCO
	Base Classes
	Attributes
	Methods

	MON::Atom
	Base Classes
	Attributes

	MON::Model
	Base Classes
	Attributes
	Methods

	MON::Connection
	Base Classes
	Attributes
	Methods

	MON::ConnectionSpecification
	Base Classes
	Attributes
	Methods

	MON::ConnectionRole
	Base Classes
	Attributes
	Methods

	MON::Set
	Base Classes
	Attributes
	Methods

	MON::Reference
	Base Classes
	Attributes
	Methods

	MON::RegistryNode
	Base Classes
	Attributes
	Methods

	MON::Constraint
	Base Classes
	Attributes
	Methods

	MON::Containment
	Base Classes
	Attributes
	Methods

	MON::ContainmentPart
	Base Classes
	Attributes
	Methods

	MON::Aspect
	Base Classes
	Attributes
	Methods

	MON::Attribute
	Base Classes
	Attributes
	Methods

	MON::FolderContainment
	Base Classes
	Methods

	MON::ConnectionEnd
	Base Classes
	Methods

	MON::ReferenceAssociation
	Base Classes
	Methods

	MON::SetMembership
	Base Classes
	Methods

	MON::ModelInAspect
	Base Classes
	Methods

	MON::AttributeAggregation
	Base Classes
	Methods

	Builder Object Network Classes
	BON::Project
	Base Classes
	Attributes
	Methods

	BON::Object
	Base Classes
	Construction and Destruction
	Attributes
	Methods

	BON::Folder
	Base Classes
	Construction and Destruction
	Attributes
	Methods

	BON::ConnectionEnd
	Base Classes
	Attributes
	Methods

	BON::ReferencePort
	Base Classes
	Methods

	BON::FCO
	Base Classes
	Construction and Destruction
	Attributes
	Methods

	BON::Atom
	Base Classes
	Construction and Destruction
	Attributes
	Methods

	BON::Model
	Base Classes
	Construction and Destruction
	Attributes
	Methods

	BON::Connection
	Base Classes
	Construction and Destruction
	Attributes
	Methods

	BON::Set
	Base Classes
	Construction and Destruction
	Attributes
	Methods

	BON::Reference
	Base Classes
	Construction and Destruction
	Attributes
	Methods

	BON::ReferencePortContainer
	Base Classes
	Methods

	BON::TypeInhObject
	Base Classes
	Attributes
	Methods

	BON::Instance
	Base Classes

	BON::Type
	Base Classes
	Methods

	BON::Attribute
	Base Classes
	Attributes
	Methods

	BON::RegistryNode
	Base Classes
	Attributes
	Methods

	BON::FCORegistryNode
	Base Classes
	Methods

	BON::FCOExRegistryNode
	Base Classes
	Methods

	BON::ModelRegistryNode
	Base Classes
	Methods

	BON::ConnectionRegistryNode
	Base Classes
	Methods

	BON::Event
	Base Classes
	Attributes
	Methods

	BON::EventListener
	Base Classes
	Attributes
	Methods

	BON::EventListenerPool
	Base Classes
	Methods

	BON::Visitor
	Base Classes
	Methods

	Appendix D – References
	Model Integrated Computing References

	Glossary of Terms
	aspects
	CBS
	Compound model
	connection
	CORBA
	COTS
	DSME
	GME
	GOTS
	Generic Modeling Environment
	interpreters
	Link
	Link parts
	MCL
	Metamodel
	metamodeling environment
	MGA
	MGK
	MIC
	MIPS
	Model interpreters
	Model translators
	modeling paradigm
	MultiGraph Architecture
	OCL
	paradigm
	POSIX
	Primitive model
	Reference parts
	References

