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Abstract 

The Generic Modeling Environment (GME) is a con-
figurable toolset that supports the easy creation of do-
main-specific modeling and program synthesis environ-
ments. The primarily graphical, domain-specific models 
can represent the application and its environment includ-
ing hardware resources, and their relationship. The mod-
els are then used to automatically synthesize the applica-
tion and/or generate inputs to COTS analysis tools. In 
addition to traditional signal processing problems, we 
have applied this approach to tool integration and struc-
turally adaptive systems among other domains. This pa-
per describes the GME toolset and compares it to other 
similar approaches. A case study is also presented that 
illustrates the core concepts through an example. 

1. Introduction 

Domain-specific design environments capture specifi-
cations and automatically generate or configure the target 
applications in particular engineering fields. Well known 
examples include Matlab/Simulink for signal processing 
[1] and LabView for instrumentation [2], among others. 
One of the most important common characteristics of 
these environments are the primarily graphical interface 
they provide for the user to specify the design. While 
their advantages have been demonstrated in several do-
mains, the high cost of development of these environ-
ments restrict their application to fields with large poten-
tial markets. It is simply not cost efficient to develop a 
domain-specific environment for narrow domains where 
only a handful of installations are needed. 

The solution to this problem is a design environment 
that is configurable for a wide range of domains. Such an 
environment needs to provide a set of generic concepts 
that are abstract enough such that they are common to 
most domains. It is then customized to every new domain 
to support the given domain language directly. While the 
development of such a generic environment is itself ex-
pensive, it need be done only once. This initial invest-
ment is amortized across multiple domains.  

2. The Generic Modeling Environment 

The Generic Modeling Environment (GME) developed 
at the Institute for Software Integrated Systems at Van-
derbilt University is a configurable toolkit for creating 
domain-specific modeling and program synthesis envi-
ronments. The configuration is accomplished through 
metamodels specifying the modeling paradigm (modeling 
language) of the application domain. The modeling para-
digm contains all the syntactic, semantic, and presentation 
information regarding the domain – which concepts will 
be used to construct models, what relationships may exist 
among those concepts, how the concepts may be organ-
ized and viewed by the modeler, and rules governing the 
construction of models. The modeling paradigm defines 
the family of models that can be created using the resul-
tant modeling environment. 

The metamodels specifying the modeling paradigm are 
used to automatically generate the target domain-specific 
environment. An interesting aspect of this approach is 
that the environment itself is used to build the metamod-
els. The generated domain-specific environment is then 
used to build domain models that are stored in a model 
database. These models are used to automatically gener-
ate the applications or to synthesize input to different 
COTS analysis tools. This process is called model 
interpretation. 

2.1. Modeling concepts 

The vocabulary of the domain-specific languages im-
plemented by different GME configurations is based on a 
set of generic concepts built into GME itself. The choice 
of these generic concepts is the most critical design deci-
sion. GME supports various concepts for building large-
scale, complex models. These include: hierarchy, multiple 
aspects, sets, references, and explicit constraints. The 
UML class diagram in Figure 1 depicts the complex rela-
tionships among these and other important concepts. 

A Project contains a set of Folders. Folders are con-
tainers that help organize models, just like folders on a 
disk help organize files. Folders contain Models. Models, 



 
 

Atoms, References, Connections and Sets are all first 
class objects, or FCO-s for short.  

Atoms are the elementary objects – they cannot con-
tain parts. Each kind of Atom is associated with an icon 
and can have a predefined set of attributes. The attribute 
values are user changeable. A good example for an Atom 
is an AND or XOR gate in a gate level digital circuit 
model. 

Models are the compound objects in our framework. 
They can have parts and inner structure. A part in a con-
tainer Model always has a Role. The modeling paradigm 
determines what kind of parts are allowed in Models act-
ing in which Roles, but the modeler determines the spe-
cific instances and number of parts a given model con-
tains (of course, explicit constraints can always restrict 
the design space). For example, if we want to model digi-
tal circuits below the gate level, then we would have to 
use Models for gates (instead of Atoms) that would con-
tain, for example, transistor Atoms. 

This containment relationship creates the hierarchical 
decomposition of Models. If a Model can have the same 
kind of Model as a contained part, then the depth of the 
hierarchy can be (theoretically) unlimited. Any object 
must have at most one parent, and that parent must be a 
Model. At least one Model does not have a  parent;  it is 
called a root Model. 

 
Figure 1. GME modeling concepts 

Aspects provide primarily visibility control. Every 
Model has a predefined set of Aspects. Each part can be 
visible or hidden in an Aspect. Every part has a set of 
primary aspects where it can be created or deleted. There 
are no restrictions on the set of Aspects a Model and it’s 
parts can have; a mapping can be defined to specify what 
Aspects of a part is shown in what Aspect of the parent 
Model. 

The simplest way to express a relationship between 
two objects in GME is with a Connection. Connections 
can be directed or undirected. Connections can have At-
tributes themselves. In order to make a Connection be-
tween two objects they must have the same parent in the 
containment hierarchy (and they also must be visible in 
the same Aspect, i.e. one of the primary Aspects of the 

Connection). The paradigm specifications can define sev-
eral kinds of Connections. It is also specified what kind of 
object can participate in a given kind of Connection. 
Connections can further be restricted by explicit Con-
straints specifying their multiplicity, for instance. 

A Connection can only express a relationship between 
objects contained by the same Model. Note that a Root 
Model, for example, cannot participate in a Connection at 
all.  In our experience, it is often necessary to associate 
different kinds of model objects in different parts of the 
model hierarchy or even in different model hierarchies 
altogether. References support these kind of relationships 
well. 

References are similar to pointers in object oriented 
programming languages. A reference is not a "real" ob-
ject, it just refers to (points to) one. In GME, a reference 
must appear as a part in a Model. This establishes a rela-
tionship between the Model that contains the reference 
and the referred-to object. Any FCO, except for a Con-
nection, can be referred to (even references themselves). 
References can be connected just like regular model ob-
jects. A reference always refers to exactly one object, 
while a single object can be referred to by multiple Refer-
ences. If a Reference refers to nothing, it is called a Null 
Reference. This can act as a placeholder for future use, 
for example 

Connections and References are binary relationships. 
Sets can be used to specify a relationship among a group 
of objects. The only restriction is that all the members of 
a Set must have the same container (parent) and be visible 
in the same Aspect. 

Some information does not lend itsef well to graphical 
representation. The GME provides the facility to augment 
the graphical objects with textual attributes. All FCOs can 
have different sets of Attributes. The kinds of Attributes 
available are text, integer, double, boolean and enumer-
ated. 

Folders, FCOs (Models, Atoms, Sets, References, 
Connections), Roles, Constraints and Aspects are the 
main concepts that are used to define a modeling para-
digm. In other words, the modeling language is made up 
of instances of these concepts. In an object-oriented pro-
gramming language, such as Java, the corresponding con-
cepts are the class, interface, built-in types, etc. Models in 
GME are similar to classes in Java; they can be instanti-
ated. When a particular model is created in GME, it be-
comes a type (class). It can be subtyped and instantiated 
as many times as the user wishes. The general rules that 
govern the behavior of this inheritance hierarchy are: 
• Only attribute values of model instances can be modi-

fied. No parts can be added or deleted. 
• Parts cannot be deleted but new parts can be added to 

subtypes. 
This concept supports the reuse and maintenance of 

models because any change in a type automatically 
propagates down the type hierarchy. Also, this makes it 
possible to create libraries of type models that can be used 
in multiple applications in the given domain. 



 
 

2.2. Metamodeling with GME 

Defining a modeling paradigm can be considered just 
another modeling problem. It is quite natural then that 
GME itself is used to solve this problem. There is a meta-
modeling paradigm defined that configures GME for 
creating metamodels [4-5]. These models are then auto-
matically translated into GME configuration information 
through model interpretation. Originally, the metamodel-
ing paradigm was hand-crafted. Once the metamodeling 
interpreter was operational, a meta-metamodel were cre-
ated and the metamodeling paradigm was regenerated 
automatically. This is similar to writing C compilers in C. 

The metamodeling paradigm is based on the Unified 
Modeling Language (UML). The syntactic definitions are 
modeled using pure UML class diagrams and the static 
semantics are specified with constraints using the  Object 
Constraint Language (OCL). Only the specification of 
presentation/visualization information necessitated some 
extensions to UML, mainly in the form of predefined 
object attributes for things such as icon file names, col-
ors, line types etc. 

2.3. GME architecture 

GME has a modular, component-based architecture 
depicted in the figure below. 

 

Figure 2. GME architecture 

The thin storage layer includes components for the dif-
ferent storage formats. Currently, MS Repository (an 
object oriented layer on top of MS SQL Server or MS 
Access) and a fast proprietary binary file format are sup-
ported. Supporting an additional format (e.g. Oracle) re-
quires the implementation of a single, well-defined, small 
interface component. 

The Core component implements the two fundamental 
building blocks of a modeling environment: objects and 
relations. Among its services are distributed access (i.e. 
locking) and undo/redo. 

Two components use the services of the Core: the 
Meta and the MGA. The Meta defines the modeling para-
digm, while the MGA implements the GME modeling 
concepts for the given paradigm. The MGA uses the Meta 
component extensively through its public COM inter-
faces. The MGA component exposes its services through 
a set of COM interfaces as well. 

The user interacts with the components at the top of 
the architecture: the GME User Interface, the Model 
Browser, the Constraint Manager, Interpreters and Add-
ons. 

Add-ons are event-driven model interpreters. The 
MGA component exposes a set of events, such as “Object 
Deleted,” “Set Member Added,” “Attribute Changed,” 
etc. External components can register to receive some or 
all of these events. They are automatically invoked by the 
MGA when the events occur. Add-ons are extremely use-
ful for extending the capabilities of the GME User Inter-
face. When a particular domain calls for some special 
operations, these can be supported without modifying the 
GME itself.  

The Constraint Manager can be considered as an inter-
preter and an add-on at the same time. It can be invoked 
explicitly by the user and it is also invoked when event-
driven constraints are present in the given paradigm. De-
pending on the priority of a constraint, the operation that 
caused a constraint violation can be aborted. For less seri-
ous violations, the Constraint Manager only sends a warn-
ing message. 

The GME User Interface component has no special 
privileges in this architecture. Any other component (in-
terpreter, add-on) has the same access rights and uses the 
same set of COM interfaces to the GME. Any operation 
that can be accomplished through the GUI, can also be 
done programmatically through the interfaces. This archi-
tecture is very flexible and supports extensibility of the 
whole environment. 

3. Tool integration: a case study 

In cooperation with the University of Southern Cali-
fornia, we are developing MILAN, a simulation frame-
work for the design and optimization of embedded sys-
tems by integrating existing simulators that are widely 
accepted and used [6]. The integrated framework will be 
built around a GME-based domain-specific modeling 
environment. Different model interpreters utilize the sys-
tem models to drive the simulations. The framework will 
be designed and implemented with extensibility as a pri-
mary requirement; integrating additional simulators in the 
future will require relatively small effort. 

The first prototype implementation of this environment 
offers a limited set of features. The modeling paradigm 
allows the specification of application models and hard-
ware resources. The application models take the form of 
hierarchical signal flow diagrams with several extensions: 
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Figure 3 MILAN metamodel of asynchronous dataflow

• Both asynchronous and synchronous dataflow seman-
tics are supported.  

• Signals are strongly typed. A separate sub-language 
allows the precise specification of data types that are 
then associated with signals. The GME constraint 
manager enforces the type consistency of signal con-
nections.  

• Component level functionality implemented in hard-
ware (i.e. configurable logic) can be expressed in a 
sub-language that provides concepts that support Sys-
temC [9] and VHDL simulations of the components.  

• The modeling paradigm allows the specification of 
explicit implementation alternatives at any level of the 
hierarchy. For example, a filter may be implemented 
in the time- or the spectral domain, it may be imple-
mented on a DSP chip in assembly, a RISC processor 
in C, an FPGA or an ASIC, etc. These alternatives, 
each with different performance characteristics and re-
source constraints, can be captured in the models. Al-
ternatives allow the environment to support the model-
ing of the design-space of the application, as opposed 
to a single-point solution. 

• The environment supports multi-granular simulations 
by allowing the user to specify implementation scripts 
at any level in the hierarchy. Implementation scripts 
can be in C, Java, Matlab, SystemC or VHDL. Speci-
fying these is mandatory at the leaf level; this is the in-
formation that is utilized during system synthesis. 

However, the user may choose to provide a C imple-
mentation of a high-level component directly, in order, 
for example, to drive the detailed simulation of the 
next component in a pipeline. This provides fine con-
trol over simulation granularity. 
Figure 3 depicts the MILAN metamodel for asynchro-

nous dataflow in GME. The major concepts include the 
AsynchPrimitive that is the leaf node in the dataflow hier-
archy representing an elementary computation block. It 
can contain different scripts for the supported simula-
tion/implementation options, for example, Matlab or Sys-
temC. AsynchAlternative can capture the different imple-
mentation choices for a certain functionality. 
AsynchCompound is the hierarchical component; it can 
contain other compounds, primitives or alternatives. Ain-
Port and AoutPort represent the signal interfaces of com-
ponents. Connecting them together with DFConn-s model 
the signal flow. 

Figure 4 shows a corresponding example dataflow 
model in the MILAN environment. 

The resource models are hierarchical block diagrams 
that provide detail down to the level of on-chip cores, 
caches, buses, etc. Four simulators are supported in the 
initial prototype: a high-level power/performance simula-
tor being developed by USC, Matlab and SystemC for 
functional simulation and SimpleScalar [10] for perform-
ance simulation of superscalar processor-based imple-
mentations. 

 



 
 

 
Figure 4 Example MILAN asynchronous dataflow model

Clearly, creating such a complex modeling and pro-
gram synthesis environment for integrated simulation of 
embedded systems from scratch would take several man-
years. By using a configurable environment like GME, on 
the other hand, the creation of a sophisticated domain-
specific graphical modeling environment was a matter of 
a month, most of which was spent deciding what con-
cepts were to be included in the domain language. Inte-
grating the simulators into the environment requires the 
manual writing of translators, i.e. C++ code that trans-
lates the graphical models into Matlab glue code, for ex-
ample. However, this is a relatively small amount of me-
dium complexity code in most cases. The process of writ-
ing these translators is aided by the sophisticated inter-
faces provided by GME. 

4. Related research 

While GME represents a unique approach in several 
respects, there exist other configurable modeling envi-
ronments. Two prominent examples are  MedaEdit+ by 
MetaCase Consulting [7], and Dome by Honeywell Re-
search [8]. In this section, we compare important archi-
tectural characteristics of GME and these other toolsets.  

All tools approach modeling using the classic attrib-
uted entity-relationship concept: entities represent real-
world objects which are characterized through variable 
valued properties, and linked to each other through rela-
tionships. Modeling in GME is built around the hierar-
chical decomposition of entities into substructures, with 
precise meta-defined control over the decomposition 
rules. The other two tools are much more focused on a 
single-level hierarchy (diagram), with optional capabili-
ties to define explosions and decompositions (sub-
diagrams) for each node in a diagram. The number and 
type of associated sub-diagrams is much less constrained 
by the paradigm, usually determined during the modeling 
process. Moreover, since in some cases multiple sub-

diagrams contain a single entity, the hierarchy does not 
embody the composition semantics present in GME. 

The most basic form of relationship relates and (typi-
cally also visually) connects entities relatively close to 
each other in the entity hierarchy, (e.g. siblings).  Other 
kind of relationships typically relate distant objects, and 
often carry the semantics of  references, pointers, or ali-
ases.  All tools distinguish at least these two kinds of rela-
tionships, and provide different concepts for them. An-
other interesting issue is how relationships are linked to 
their target entities. GME and Dome both provide ports 
(auxiliary entities within an entity), while MetaEdit+ re-
lies on multi-legged connections to work around this 
problem. 

The semantic correctness of a model is a key issue in 
modeling, and constraint predicates to be checked are the 
typical approach to this problem.  Constraints are not only 
a key component in most system description formalisms, 
but they are also indispensable for building robust and 
complex models in a reliable way.  

The most basic form of constraints, cardinality of rela-
tionships, is supported everywhere.  In addition, MetaE-
dit+ offers some further capabilities to restrict connec-
tivity by relations. GME, on the other hand, has a full-
featured universal predicate expression language (based 
on OCL), which can represent much more complex rela-
tional constraints. These predicates can not only express 
relationships constraints, but can also include rules for the 
containment hierarchy and the values of the properties. 
Dome does not support arbitrary constraints, although 
several types of validity criteria can be expressed by us-
ing the Alter extension language. Also, Dome has some 
further concepts to cover typical constraint situations (e.g. 
dependent nodes). 

The most important common feature of the tools in 
this review is they all have integrated  metaprogramming  
environments to define the concepts to be used and rules 
to be enforced throughout the modeling phase. The 
metamodeling environments of DOME and GME are just 



 
 

another kind of modeling paradigm (as defined by the 
meta-metamodel). This not only demonstrates the capa-
bilities of the modeling tools, but also eases their leaning 
curve. The MetaEdit+ tool has a more conservative and 
simplistic approach: a series of dialog boxes for specify-
ing the metamodel in a non-graphical way.  

While visualization is important in these tools, their 
eventual goal is to extract information from the model 
data in some programmatic way. All tools provide capa-
bilities for this model reporting or interpretation phase, 
but with significant differences.  MetaEdit+ has a rela-
tively simple, proprietary reporting definition language, 
which makes it easy to generate simple reports. Attractive 
ready-made report tools are provided with in the distribu-
tion that generate HTML and other documents, while the 
user can write similar reports himself too. As its name 
implies the report definition language is not a universal 
programming language, and only read access to the 
model data is provided. This is a serious shortcoming of 
MetaEdit+. 

Model interpretation in Dome is centered around its 
scripting language, Alter, which is based on Scheme.  
Alter has full access to the model database, and is used 
extensively for checking constraints and providing cus-
tom-defined drawing, etc. Alter scripts are thus not only 
able to read the model, but also to modify it, e.g. create 
new entities.  

An additional interesting feature in Dome is its visual 
programming language, Projector, and the corresponding 
modeling notation, which allows creating programs 
through Dome itself.  Projector is a data-flow like lan-
guage, and while it is admittedly not quite suitable for 
creating a full complex program, it is a very attractive 
way to integrate algorithms and operators written in Al-
ter. 

Data access and standards-compliant extensibility 
powerful features of GME, which identifies data and tool 
integration as one of its primary application areas, for 
several reasons. GME is completely component-based, 
with public interfaces among many of its components. 
Most notably, the visualization part and the model and 
metamodel storage is separated by an interface which is 
accessible to user-written components as well, thus giv-
ing access level identical to that of the native GME GUI. 
Since the component model is COM, the primary lan-
guages for integration are C++ and Visual Basic, while 
Java, Python, etc. access is also available.  Access is bidi-
rectional, and fully transactional, which makes many “on-
line modeling” scenarios feasible (e.g. for application 
monitoring). 

Since programming at the component level is some-
what challenging (it requires advanced transaction control 
and event handling), several alternatives provide reduced 
functionality through simpler interfaces. First, the GME 
pattern-based report language provides simple reporting 
capabilities through the definition captured in a simple 
text file. Second, the Builder Object Network maps 
model data onto a C++ data network, resulting in a high-

level, extensible API that is much easier to use than the 
native interface. Third, GME provides bidirectional XML 
access for both model and metamodel information. And, 
finally, the commercial data backends (repository and 
relational databases) are also a feasible – albeit non-trivial 
– way to access model data.  

5. Conclusion 

We presented the Generic Modeling Environment 
(GME), a configurable modeling and program synthesis 
toolset, that makes the rapid and cost-effective creation of 
highly customized, domain-specific system design and 
analysis environments possible. It is highly applicable to 
intelligent signal processing and instrumentation domains 
where flexibility and customizability are primary re-
quirements and hence, the commercially available envi-
ronments do not suffice. 
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