

Institute for Software Integrated Systems 1 High-Level Java Interface to GME

High-Level Java Interface to GME

Users Manual

Version 1.0

February 2004

Institute for Software Integrated Systems
Vanderbilt University

Copyright © 2000-2004 Vanderbilt University

All rights reserved

http://www.isis.vanderbilt.edu

Institute for Software Integrated Systems 2 High-Level Java Interface to GME

Introduction to the Java Interface
The process of accessing GME models and generating useful information, e.g. configuration files for COTS
software, database schema, input for a discrete-event simulator or even source code, is called model
interpretation. GME provides two interfaces to support model interpretation. The first one is a COM
interface that lets the user write these components in any language that supports COM, e.g. C++, Visual
Basic or Python. The COM interface provides the means to access and modify the models, their attributes
and connectivity. In short, the user can do everything that can be done using the GUI of the GME. The
other interface is a high-level C++ interface (builder object network or BON) that takes care of a lot of
lower level issues and makes component writing much easier. This document describes a new addition, a
high-level java interface for GME.

Interpreters are typical, but not the only components that can be created using this technology. The other
types are plugins, i.e. paradigm-independent components that provide some useful additional functionality
to ease working in GME. These components are very similar to interpreters. For example, a plugin can be
developed to search or locate objects based on some user-defined criteria, like the value of an attribute.

What Does the Java Interface Do?
The Java interface is implemented on the top of the COM interface. GME objects can be accessed in java
through a low-level API which is the direct wrapping of the COM interfaces or a high-level API which is
similar to the C++ builder object network (BON) API. When the user initiates model interpretation, the
Java interface creates the builder object network. The builder object network mirrors the structure of the
models: each model, atom, reference, connection, etc. has a corresponding builder object. This way the
interface shields the user from the lower level details of the COM interface and provides support for easy
traversal of the models along the containment hierarchy, the connections, or the references. The builder
classes provide general-purpose functionality. The builder objects are instances of these predefined
paradigm-independent classes. For simple paradigm-specific or any kind of paradigm-independent
components, they are all the user needs. For more complicated components, the builder classes can be
extended with inheritance. By implementing a function of the BONComponent interface, the user can have
the component interface automatically instantiate these paradigm-specific classes instead of the built-in
ones. The builder object network will have the functionality provided by the general-purpose interface
extended by the functionality the component writer needs.

Writing a Java interpreter
First of all the interpreter writer should decide which java API will be used. If the user wants to use the
low-level API the org.isis.gme.bon.Component must be implemented. For the high-level API the
org.isis.gme.bon.BONComponent must be implemented. Here is a sample class writing out the project
name using the low-level API:

package org.isis.gme.bon;

import javax.swing.JOptionPane;
import org.isis.gme.mga.MgaFCO;
import org.isis.gme.mga.MgaFCOs;
import org.isis.gme.mga.MgaProject;

public class TestComponent implements Component {
 public void invokeEx(MgaProject project, MgaFCO currentObj,

 MgaFCOs selectedObjs, int param)
 {
 String msg = new String();
 msg = "Project name: " + project.getName() + "\n";
 JOptionPane.showMessageDialog(null, msg, "Java Interpreter Test",
 JOptionPane.ERROR_MESSAGE);
 }
}

Institute for Software Integrated Systems 3 High-Level Java Interface to GME

When the user starts the interpreter, a java virtual machine is started, the java wrapper classes of the gme
objects are created than the invokeEx function of the interpreter is called.

The following code shows an example of an interpreter using the high-level API:

package org.isis.gme.bon;

import javax.swing.JOptionPane;

import org.isis.gme.mga.MgaFCO;
import org.isis.gme.mga.MgaFCOs;
import org.isis.gme.mga.MgaProject;

public class TestComponent implements BONComponent
{

public void invokeEx(JBuilder builder, JBuilderObject focus,
 Collection selected, int param)
{
}

}

When the user initiates interpretation, first the builder object network is created then the above function is
called. The first three parameters provide ways of traversing the builder object network. Using the first
parameter ‘builder’ it is possible for the user to start interpretation from the root folder of the models. Using
the root folder one can access the list of folders. Each folder provides a list of builder objects corresponding
to the root models and subfolders. Any builder object can then be accessed through recursive traversal of
the children of model builders.

The second parameter ‘focus’ provides the object in focus when the interpretation was started, thus the user
can interpret from this stage. The Next parameter ‘selected’ contains builders that were selected when
interpretation was started. If the interpretation was started through a context menu (i.e. right click) then the
list contains items for all the selected objects in the given window. If the interpretation was started through
the context menu of the Model Browser, then the list contains the builders for the selected models in the
browser. Using this list parameter of the Invoke function makes it possible to start the interpretation at
models the user selects. The long parameter is unused at this point.

High-level Java Interface
The simple class structure of the component interface is shown below.

Interpreter Interface Classes

As noted before, a single instance of the JBuilder class provides a top-level entry point into the builder
object network. It provides access to the model folders and supplies the name of the current project. The
public interface of the JBuilder class is shown below.

JBuilder JBuilderObject

JBuilderFolder

JBuilderModel

JBuilderConnection

JBuilderAtom

JBuilderSet

JBuilderModelReferenc

JBuilderReference

JBuilderReferencePort

Institute for Software Integrated Systems 4 High-Level Java Interface to GME

public class JBuilder
{ String getProjectName();

JBuilderFolder getRootFolder();
Vector getFolders(); // the Vector contains JBuilderFolder objects

 JBuilderFolder getFolder(String name);
}

The JBuilderFolder class provides access to the root models of the given folder. It can also be used to
create new root models.

public class JBuilderFolder
{ String getName();

Vector getRootModels(); // the Vector contains JBuilderModel objects
Vector getSubFolders(); // the Vector contains JBuilderFolder objects
JBuilderModel getRootModel(String name);
JBuilderModel createNewModel(String kindName);

}

The JBuilderObject is the base class for several other classes. It provides a set of common functionality for
models, atoms, references, sets and connections. Some of the functions need some explanation. The
getAttribute() functions return true when they successfully retrieved the value of attribute whose name was
supplied in the name argument. If the type of the val argument does not match the attribute or the wrong
name was provided, the function returns false. For field and page attributes, the type matches that of
specified in the meta, for menus, it is a String and for toggle switches, it is a bool. The
getxxxAttributeNames functions return the list of names of attributes the given object has. This helps
writing paradigm-independent components (plugins). The getReferencedBy function returns the list of
references that refer to the given object. The getInConnections (getOutConnection) functions return the list
of incoming (outgoing) connections from the given object. The string argument specifies the name of the
connection kind as specified by the modeling paradigm. The getInConnectedObjects
(getOutConnectedObjects) functions return a list of objects instead. The traverseChildren functions provide
a ways to traverse the builder object network along the containment hierarchy. The implementation
provided does not do anything; the component writer can override it to implement the necessary
functionality. As we'll see later, the JBuilderModel class does override this function. It enumerates all of its
children and calls their Traverse method.

public class JBuilderObject extends Object
{ String getName();

boolean setName(String newname);
void getNamePath(String namePath);
String getKindName();
String getPartName();
JBuilderModel getParent();
JBuilderFolder getFolder();
boolean getAttribute(String name, String val[]); //uses arrays because java
boolean getAttribute(String name, int val[]); //does not have a true pass
boolean getAttribute(String name, bool val[]); //by reference, the result will
boolean setAttribute(String name, String val[]); //be in val[0]
boolean setAttribute(String name, int val[]);
boolean setAttribute(String name, bool val[]);
Vector getStrAttributeNames(); // the Vector contains String objects
Vector getIntAttributeNames(); // the Vector contains String objects
Vector getBoolAttributeNames(); // the Vector contains String objects
Vector getFloatAttributeNames(); // the Vector contains String objects
Vector getRefAttributeNames(); // the Vector contains String objects
Vector getReferencedBy(); // the Vector contains JBuilderObject objects
Vector getInConnections(String name); // the Vector contains JBuilderConnection
Vector getOutConnections(String name);// the Vector contains JBuilderConnection
boolean getInConnectedObjects(String name, Vector list[]);

//list[0] contains JbuilderObject objects
boolean getOutConnectedObjects(String name, Vector list[]);

//list[0] contains JbuilderObject objects
void traverseChildren(); //extend in custom classes

}

The JBuilderModel class is the most important class in the component interface, simply because models are
the central objects in the GME. They contain other objects, connections, sets and have aspects etc. The
getChildren function returns a list of all children, i.e. all objects the model contains (models, atoms, sets,

Institute for Software Integrated Systems 5 High-Level Java Interface to GME

references and connections). The getModels method returns the list of contained models. If a role name is
supplied then only the specified part list is returned. The getAtoms, getReferences, getAtomReferences and
getModelReferences, getSets() functions work the same way except that a part name must be supplied to
them. The getConnections method returns the list of the kind of connections that was requested. These are
the connections that are visible inside the given model.

The getAspectNames function returns the list of names of aspects the current model has. This helps in
writing paradigm-independent components. Children can be created with the appropriate creation functions.
Similarly, connections can be constructed by specifying their kind and the source and destination objects.
Please, see the description of the JBuilderConnection class for a detailed description of connections. The
traverseModels function is similar to the traverseChildren but it only traverses models.

public class JBuilderModel extends JBuilderObject
{ Vector getChildren(); // the Vector contains JbuilderObject objects

Vector getModels(); // the Vector contains JbuilderModel objects
Vector getModels(String partName); // the Vector contains JbuilderModel objects
Vector getAtoms(String partName); // the Vector contains JbuilderAtom objects
Vector getReferences(String refPartName);
 // the Vector contains JbuilderReference objects
Vector getModelReferences(String refPartName);
 // the Vector contains JbuilderModelReference objects
Vector getAtomReferences(String refPartName);
 // the Vector contains JbuilderAtomReference objects
Vector getConnections(String name);

// the Vector contains JbuilderConnection objects
Vector getSets(String name); // the Vector contains JbuilderSet objects
void getAspectNames(Vector list);

// the Vector should be created and passed, the list will
contain String objects of all the Aspects on returning

JBuilderModel createNewModel(String partName);
JBuilderAtom createNewAtom(String partName);
JBuilderModelReference createNewModelReference(String refPartName,

JBuilderObject refTo);
JBuilderAtomReference createNewAtomReference(String refPartName,

JBuilderObject refTo);
JBuilderSet createNewSet(String partName);
JBuilderConnection createNewConnection(String connName, CBuilderObject *src,

CBuilderObject *dst);
void traverseModels();
void traverseChildren();

}

The JBuilderAtom class does not provide any new public methods.

public class JBuilderAtom extends JBuilderObject
{
}

Even though the GME deals with ports of models (since connection are usually made to these instead of the
model itself), the component interface avoids using ports for the sake of simplicity. However, model
references mandate the introduction of a new kind of object, model reference ports. A model reference
contains a list of port objects. The getOwner method of the JBuilderReferencePort class returns the model
reference containing the given port.

public class JBuilderReferencePort extends JBuilderObject
{ JBuilderModelReference getOwner();
}

The JBuilderModelReference class provides the getReferred function that returns the model (or model
reference) referred to by the given reference. The getReferencePorts return the list of
JBuilderReferencePorts.

public class JBuilderModelReference extends JBuilderObject
{ Vector getReferencePorts(); // the Vector contains JBuilderReferencePort objects

JBuilderObject getReferred();
}

A JBuilderConnection instance describes a relation among three objects. The owner is the model that
contains the given connection (i.e. the connection is visible in that model). The source (destination) is

Institute for Software Integrated Systems 6 High-Level Java Interface to GME

always JBuilderObject. If it is a regular object (i.e. not a reference port) then it is either contained by the
owner, or it corresponds to a port of a model contained by the owner. So, in case of regular objects, either
the source (destination) or its parent is a child of the owner. In case of a reference port, its owner must be a
child of the owner of the connection.

public class JBuilderConnection extends JBuilderObject
{ JBuilderModel getOwner();

JBuilderObject getSource();
JBuilderObject getDestination();

}

The JBuilderSet class member function provides straightforward access to the different components of sets.

public class JBuilderSet extends JBuilderObject
{ JBuilderModel getOwner();

Vector getMembers(); // the Vector contains JbuilderObejct objects
boolean addMember(JBuilderObject part);
boolean removeMember(JBuilderObject part);

}

Example
The following simple paradigm-independent interpreter prints a message for each model in the project. For
the sake of simplicity, it assumes that there is no folder hierarchy in the given project. The JComponent
class file is shown below.

import java.util.*;
import org.isis.gme.bon.*;
public class Example2 extends BONComponent
{

public void invokeEx(JBuilder builder, JBuilderObject focus, Collection selected,
 int param)

 {
Vector folds = builder.getFolders();

 int foCount = folds.size();
 for(int i=0; i<foCount;i++)
 { JBuilderFolder fold = (JBuilderFolder)folds.elementAt(i);
 Vector roots = fold.getRootModels();
 int roCount = roots.size();

for(int j=0; j<roCount;j++)
{ JBuilderModel root = (JBuilderModel)roots.elementAt(j);
 scanModels(root,fold.getName());
}

 }
 }
 public void scanModels(JBuilderModel model, String fName)
 { system.out.println(model.getName()+" model found in the

"+fname);
 Vector models = model.getModels();

Int moCount = models.size();
For(int i=0;i<moCount;i++)
{ JBuilderModel subModel = (JBuilderModel)models.elementAt(i);
 scanModels(subModel,fName);
}

 }
}

Extending the Java Interface
The previous example used the built-in classes only. The component writer can extend the component
interface by his own classes. In order for the interface to be able to create the builder object network
instantiating the new added classes before the user-defined interpretation actually begins, a couple of steps
must be done. The derived class declaration must contain a constructor identical to the super class and
should call the constructor of the super class. Then the user should add the function calls for the specific
custom class in the interpreter’s registerCustomClasses method. The function classes are given below.

addCustomModel(<kindName>,<Class Name>);
addCustomModelRef(<kindName>,<Class Name>);
addCustomAtom(<kindName>,<Class Name>);

Institute for Software Integrated Systems 7 High-Level Java Interface to GME

addCustomAtomRef(<kindName>,<Class Name>);
addCustomConnection(<kindName>,<Class Name>);
addCustomSet(<kindName>,<Class Name>);

Here, the <Class Name> is the name of the new class, while the <kindName> is the kind name of the object
that should instantiate your class. (The user can create abstract base classes as discussed later.). For
example, if we have a "Compound" model in our paradigm, we can create a builder class for it the
following way.

// JCompoundBuilder class
class JCompoundBuilder extends JBuilderModel
{ public JCompoundBuilder (IMgaModel iModel, JBuilderModel parent)
 { super(iModel,parent);
 }
 // user defined code and variables;

}

// Interpreter class
public class TestInterpreter
{

public void invokeEx(JBuilder builder, JBuilderObject focus, Collection selected,
 int param)

 {
 …
 }

public void registerCustomClasses()
 {
 …
 AddCustomModel(“Compound”,”JCompoundBuilder”);
 …

}
}

Do not define your own constructors apart from the one required, you have to call the base class
implementation.

If you want to define abstract base classes that are not associated with any of your models, use “*” in the
kindName field.

Example
Let's assume that our modeling paradigm has a model kind called Compound. Let's write a component that
implements an algorithm similar to the previous example. In this case, we'll scan only the Compound
models. Again, the folder hierarchy is not considered. Here is the Component.java file:

// JCompoundBuilder class
class JCompoundBuilder extends JBuilderModel
{ public JCompoundBuilder (IMgaModel iModel, JBuilderModel parent)
 { super(iModel,parent);
 }

 public void scan(String fName)
 { System.out.println(model.getName()+" Compound found

in The
+fname);

 Vector models = model.getModels();
Int moCount = models.size();
For(int i=0;i<moCount;i++)
{ JBuilderModel subModel = (JBuilderModel)models.ellementAt(i);
 if(root.getClass().toString().equals(

“class JCompoundBuilder”))
((JCompoundBuilder)subModel).scan(fold.getName);

}

 }

}

// Interpreter class
public class TestInterpreter

Institute for Software Integrated Systems 8 High-Level Java Interface to GME

{
public void invokeEx(JBuilder builder, JBuilderObject focus,

 Collection selected, int param)
{

Vector folds = builder.getFolders();
 int foCount = folds.size();
 for(int i=0; i<foCount;i++)
 { JBuilderFolder fold = (JBuilderFolder)folds.elementAt(i);
 Vector roots = fold.getRootModels();
 int roCount = roots.size();

for(int j=0; j<roCount;j++)
{ JBuilderModel root = (JBuilderModel)roots.elementAt(j);
 if(root.getClass().toString().equals(

“JCompoundBuilder”))
((JCompoundBuilder)root).scan(fold.GetName);

}
 }
}

public void registerCustomClasses()

 {
 addCustomModel(“Compound”,”JCompoundBuilder”);

}
}

Registering a Java interpreter
Once the Java interpreter is implemented it must be registered before using it. The registration can be done
with the JavaCompRegister utility included in the distribution.

