
Copyright 2001 IEEE. Published in the Proceedings of WISP'2001, May, 2001 in Budapest, Hungary.
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional pur-

poses or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works, must be obtained from the IEEE.

The Generic Modeling Environment

Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai,
Jason Garrett, Charles Thomason, Greg Nordstrom, Jonathan Sprinkle and Peter Volgyesi

Vanderbilt University, Institute for Software Integrated Systems
Nashville, TN 37235, USA
akos@isis.vanderbilt.edu

Abstract

The Generic Modeling Environment (GME) is a con-
figurable toolset that supports the easy creation of do-
main-specific modeling and program synthesis environ-
ments. The primarily graphical, domain-specific models
can represent the application and its environment includ-
ing hardware resources, and their relationship. The mod-
els are then used to automatically synthesize the applica-
tion and/or generate inputs to COTS analysis tools. In
addition to traditional signal processing problems, we
have applied this approach to tool integration and struc-
turally adaptive systems among other domains. This pa-
per describes the GME toolset and compares it to other
similar approaches. A case study is also presented that
illustrates the core concepts through an example.

1. Introduction

Domain-specific design environments capture specifi-
cations and automatically generate or configure the target
applications in particular engineering fields. Well known
examples include Matlab/Simulink for signal processing
[1] and LabView for instrumentation [2], among others.
One of the most important common characteristics of
these environments are the primarily graphical interface
they provide for the user to specify the design. While
their advantages have been demonstrated in several do-
mains, the high cost of development of these environ-
ments restrict their application to fields with large poten-
tial markets. It is simply not cost efficient to develop a
domain-specific environment for narrow domains where
only a handful of installations are needed.

The solution to this problem is a design environment
that is configurable for a wide range of domains. Such an
environment needs to provide a set of generic concepts
that are abstract enough such that they are common to
most domains. It is then customized to every new domain
to support the given domain language directly. While the
development of such a generic environment is itself ex-
pensive, it need be done only once. This initial invest-
ment is amortized across multiple domains.

2. The Generic Modeling Environment

The Generic Modeling Environment (GME) developed
at the Institute for Software Integrated Systems at Van-
derbilt University is a configurable toolkit for creating
domain-specific modeling and program synthesis envi-
ronments. The configuration is accomplished through
metamodels specifying the modeling paradigm (modeling
language) of the application domain. The modeling para-
digm contains all the syntactic, semantic, and presentation
information regarding the domain – which concepts will
be used to construct models, what relationships may exist
among those concepts, how the concepts may be organ-
ized and viewed by the modeler, and rules governing the
construction of models. The modeling paradigm defines
the family of models that can be created using the resul-
tant modeling environment.

The metamodels specifying the modeling paradigm are
used to automatically generate the target domain-specific
environment. An interesting aspect of this approach is
that the environment itself is used to build the metamod-
els. The generated domain-specific environment is then
used to build domain models that are stored in a model
database. These models are used to automatically gener-
ate the applications or to synthesize input to different
COTS analysis tools. This process is called model
interpretation.

2.1. Modeling concepts

The vocabulary of the domain-specific languages im-
plemented by different GME configurations is based on a
set of generic concepts built into GME itself. The choice
of these generic concepts is the most critical design deci-
sion. GME supports various concepts for building large-
scale, complex models. These include: hierarchy, multiple
aspects, sets, references, and explicit constraints. The
UML class diagram in Figure 1 depicts the complex rela-
tionships among these and other important concepts.

A Project contains a set of Folders. Folders are con-
tainers that help organize models, just like folders on a
disk help organize files. Folders contain Models. Models,

Atoms, References, Connections and Sets are all first
class objects, or FCO-s for short.

Atoms are the elementary objects – they cannot con-
tain parts. Each kind of Atom is associated with an icon
and can have a predefined set of attributes. The attribute
values are user changeable. A good example for an Atom
is an AND or XOR gate in a gate level digital circuit
model.

Models are the compound objects in our framework.
They can have parts and inner structure. A part in a con-
tainer Model always has a Role. The modeling paradigm
determines what kind of parts are allowed in Models act-
ing in which Roles, but the modeler determines the spe-
cific instances and number of parts a given model con-
tains (of course, explicit constraints can always restrict
the design space). For example, if we want to model digi-
tal circuits below the gate level, then we would have to
use Models for gates (instead of Atoms) that would con-
tain, for example, transistor Atoms.

This containment relationship creates the hierarchical
decomposition of Models. If a Model can have the same
kind of Model as a contained part, then the depth of the
hierarchy can be (theoretically) unlimited. Any object
must have at most one parent, and that parent must be a
Model. At least one Model does not have a parent; it is
called a root Model.

Figure 1. GME modeling concepts

Aspects provide primarily visibility control. Every
Model has a predefined set of Aspects. Each part can be
visible or hidden in an Aspect. Every part has a set of
primary aspects where it can be created or deleted. There
are no restrictions on the set of Aspects a Model and it’s
parts can have; a mapping can be defined to specify what
Aspects of a part is shown in what Aspect of the parent
Model.

The simplest way to express a relationship between
two objects in GME is with a Connection. Connections
can be directed or undirected. Connections can have At-
tributes themselves. In order to make a Connection be-
tween two objects they must have the same parent in the
containment hierarchy (and they also must be visible in
the same Aspect, i.e. one of the primary Aspects of the

Connection). The paradigm specifications can define sev-
eral kinds of Connections. It is also specified what kind of
object can participate in a given kind of Connection.
Connections can further be restricted by explicit Con-
straints specifying their multiplicity, for instance.

A Connection can only express a relationship between
objects contained by the same Model. Note that a Root
Model, for example, cannot participate in a Connection at
all. In our experience, it is often necessary to associate
different kinds of model objects in different parts of the
model hierarchy or even in different model hierarchies
altogether. References support these kind of relationships
well.

References are similar to pointers in object oriented
programming languages. A reference is not a "real" ob-
ject, it just refers to (points to) one. In GME, a reference
must appear as a part in a Model. This establishes a rela-
tionship between the Model that contains the reference
and the referred-to object. Any FCO, except for a Con-
nection, can be referred to (even references themselves).
References can be connected just like regular model ob-
jects. A reference always refers to exactly one object,
while a single object can be referred to by multiple Refer-
ences. If a Reference refers to nothing, it is called a Null
Reference. This can act as a placeholder for future use,
for example

Connections and References are binary relationships.
Sets can be used to specify a relationship among a group
of objects. The only restriction is that all the members of
a Set must have the same container (parent) and be visible
in the same Aspect.

Some information does not lend itsef well to graphical
representation. The GME provides the facility to augment
the graphical objects with textual attributes. All FCOs can
have different sets of Attributes. The kinds of Attributes
available are text, integer, double, boolean and enumer-
ated.

Folders, FCOs (Models, Atoms, Sets, References,
Connections), Roles, Constraints and Aspects are the
main concepts that are used to define a modeling para-
digm. In other words, the modeling language is made up
of instances of these concepts. In an object-oriented pro-
gramming language, such as Java, the corresponding con-
cepts are the class, interface, built-in types, etc. Models in
GME are similar to classes in Java; they can be instanti-
ated. When a particular model is created in GME, it be-
comes a type (class). It can be subtyped and instantiated
as many times as the user wishes. The general rules that
govern the behavior of this inheritance hierarchy are:
• Only attribute values of model instances can be modi-

fied. No parts can be added or deleted.
• Parts cannot be deleted but new parts can be added to

subtypes.
This concept supports the reuse and maintenance of

models because any change in a type automatically
propagates down the type hierarchy. Also, this makes it
possible to create libraries of type models that can be used
in multiple applications in the given domain.

2.2. Metamodeling with GME

Defining a modeling paradigm can be considered just
another modeling problem. It is quite natural then that
GME itself is used to solve this problem. There is a meta-
modeling paradigm defined that configures GME for
creating metamodels [4-5]. These models are then auto-
matically translated into GME configuration information
through model interpretation. Originally, the metamodel-
ing paradigm was hand-crafted. Once the metamodeling
interpreter was operational, a meta-metamodel were cre-
ated and the metamodeling paradigm was regenerated
automatically. This is similar to writing C compilers in C.

The metamodeling paradigm is based on the Unified
Modeling Language (UML). The syntactic definitions are
modeled using pure UML class diagrams and the static
semantics are specified with constraints using the Object
Constraint Language (OCL). Only the specification of
presentation/visualization information necessitated some
extensions to UML, mainly in the form of predefined
object attributes for things such as icon file names, col-
ors, line types etc.

2.3. GME architecture

GME has a modular, component-based architecture
depicted in the figure below.

Figure 2. GME architecture

The thin storage layer includes components for the dif-
ferent storage formats. Currently, MS Repository (an
object oriented layer on top of MS SQL Server or MS
Access) and a fast proprietary binary file format are sup-
ported. Supporting an additional format (e.g. Oracle) re-
quires the implementation of a single, well-defined, small
interface component.

The Core component implements the two fundamental
building blocks of a modeling environment: objects and
relations. Among its services are distributed access (i.e.
locking) and undo/redo.

Two components use the services of the Core: the
Meta and the MGA. The Meta defines the modeling para-
digm, while the MGA implements the GME modeling
concepts for the given paradigm. The MGA uses the Meta
component extensively through its public COM inter-
faces. The MGA component exposes its services through
a set of COM interfaces as well.

The user interacts with the components at the top of
the architecture: the GME User Interface, the Model
Browser, the Constraint Manager, Interpreters and Add-
ons.

Add-ons are event-driven model interpreters. The
MGA component exposes a set of events, such as “Object
Deleted,” “Set Member Added,” “Attribute Changed,”
etc. External components can register to receive some or
all of these events. They are automatically invoked by the
MGA when the events occur. Add-ons are extremely use-
ful for extending the capabilities of the GME User Inter-
face. When a particular domain calls for some special
operations, these can be supported without modifying the
GME itself.

The Constraint Manager can be considered as an inter-
preter and an add-on at the same time. It can be invoked
explicitly by the user and it is also invoked when event-
driven constraints are present in the given paradigm. De-
pending on the priority of a constraint, the operation that
caused a constraint violation can be aborted. For less seri-
ous violations, the Constraint Manager only sends a warn-
ing message.

The GME User Interface component has no special
privileges in this architecture. Any other component (in-
terpreter, add-on) has the same access rights and uses the
same set of COM interfaces to the GME. Any operation
that can be accomplished through the GUI, can also be
done programmatically through the interfaces. This archi-
tecture is very flexible and supports extensibility of the
whole environment.

3. Tool integration: a case study

In cooperation with the University of Southern Cali-
fornia, we are developing MILAN, a simulation frame-
work for the design and optimization of embedded sys-
tems by integrating existing simulators that are widely
accepted and used [6]. The integrated framework will be
built around a GME-based domain-specific modeling
environment. Different model interpreters utilize the sys-
tem models to drive the simulations. The framework will
be designed and implemented with extensibility as a pri-
mary requirement; integrating additional simulators in the
future will require relatively small effort.

The first prototype implementation of this environment
offers a limited set of features. The modeling paradigm
allows the specification of application models and hard-
ware resources. The application models take the form of
hierarchical signal flow diagrams with several extensions:

MGA

Core

FileMSR

RepStorage FileStorage

…

Meta

GME 2000 GUI Browser
Constraint
Manager Interpreter Add-On…

Figure 3 MILAN metamodel of asynchronous dataflow

• Both asynchronous and synchronous dataflow seman-
tics are supported.

• Signals are strongly typed. A separate sub-language
allows the precise specification of data types that are
then associated with signals. The GME constraint
manager enforces the type consistency of signal con-
nections.

• Component level functionality implemented in hard-
ware (i.e. configurable logic) can be expressed in a
sub-language that provides concepts that support Sys-
temC [9] and VHDL simulations of the components.

• The modeling paradigm allows the specification of
explicit implementation alternatives at any level of the
hierarchy. For example, a filter may be implemented
in the time- or the spectral domain, it may be imple-
mented on a DSP chip in assembly, a RISC processor
in C, an FPGA or an ASIC, etc. These alternatives,
each with different performance characteristics and re-
source constraints, can be captured in the models. Al-
ternatives allow the environment to support the model-
ing of the design-space of the application, as opposed
to a single-point solution.

• The environment supports multi-granular simulations
by allowing the user to specify implementation scripts
at any level in the hierarchy. Implementation scripts
can be in C, Java, Matlab, SystemC or VHDL. Speci-
fying these is mandatory at the leaf level; this is the in-
formation that is utilized during system synthesis.

However, the user may choose to provide a C imple-
mentation of a high-level component directly, in order,
for example, to drive the detailed simulation of the
next component in a pipeline. This provides fine con-
trol over simulation granularity.
Figure 3 depicts the MILAN metamodel for asynchro-

nous dataflow in GME. The major concepts include the
AsynchPrimitive that is the leaf node in the dataflow hier-
archy representing an elementary computation block. It
can contain different scripts for the supported simula-
tion/implementation options, for example, Matlab or Sys-
temC. AsynchAlternative can capture the different imple-
mentation choices for a certain functionality.
AsynchCompound is the hierarchical component; it can
contain other compounds, primitives or alternatives. Ain-
Port and AoutPort represent the signal interfaces of com-
ponents. Connecting them together with DFConn-s model
the signal flow.

Figure 4 shows a corresponding example dataflow
model in the MILAN environment.

The resource models are hierarchical block diagrams
that provide detail down to the level of on-chip cores,
caches, buses, etc. Four simulators are supported in the
initial prototype: a high-level power/performance simula-
tor being developed by USC, Matlab and SystemC for
functional simulation and SimpleScalar [10] for perform-
ance simulation of superscalar processor-based imple-
mentations.

Figure 4 Example MILAN asynchronous dataflow model

Clearly, creating such a complex modeling and pro-
gram synthesis environment for integrated simulation of
embedded systems from scratch would take several man-
years. By using a configurable environment like GME, on
the other hand, the creation of a sophisticated domain-
specific graphical modeling environment was a matter of
a month, most of which was spent deciding what con-
cepts were to be included in the domain language. Inte-
grating the simulators into the environment requires the
manual writing of translators, i.e. C++ code that trans-
lates the graphical models into Matlab glue code, for ex-
ample. However, this is a relatively small amount of me-
dium complexity code in most cases. The process of writ-
ing these translators is aided by the sophisticated inter-
faces provided by GME.

4. Related research

While GME represents a unique approach in several
respects, there exist other configurable modeling envi-
ronments. Two prominent examples are MedaEdit+ by
MetaCase Consulting [7], and Dome by Honeywell Re-
search [8]. In this section, we compare important archi-
tectural characteristics of GME and these other toolsets.

All tools approach modeling using the classic attrib-
uted entity-relationship concept: entities represent real-
world objects which are characterized through variable
valued properties, and linked to each other through rela-
tionships. Modeling in GME is built around the hierar-
chical decomposition of entities into substructures, with
precise meta-defined control over the decomposition
rules. The other two tools are much more focused on a
single-level hierarchy (diagram), with optional capabili-
ties to define explosions and decompositions (sub-
diagrams) for each node in a diagram. The number and
type of associated sub-diagrams is much less constrained
by the paradigm, usually determined during the modeling
process. Moreover, since in some cases multiple sub-

diagrams contain a single entity, the hierarchy does not
embody the composition semantics present in GME.

The most basic form of relationship relates and (typi-
cally also visually) connects entities relatively close to
each other in the entity hierarchy, (e.g. siblings). Other
kind of relationships typically relate distant objects, and
often carry the semantics of references, pointers, or ali-
ases. All tools distinguish at least these two kinds of rela-
tionships, and provide different concepts for them. An-
other interesting issue is how relationships are linked to
their target entities. GME and Dome both provide ports
(auxiliary entities within an entity), while MetaEdit+ re-
lies on multi-legged connections to work around this
problem.

The semantic correctness of a model is a key issue in
modeling, and constraint predicates to be checked are the
typical approach to this problem. Constraints are not only
a key component in most system description formalisms,
but they are also indispensable for building robust and
complex models in a reliable way.

The most basic form of constraints, cardinality of rela-
tionships, is supported everywhere. In addition, MetaE-
dit+ offers some further capabilities to restrict connec-
tivity by relations. GME, on the other hand, has a full-
featured universal predicate expression language (based
on OCL), which can represent much more complex rela-
tional constraints. These predicates can not only express
relationships constraints, but can also include rules for the
containment hierarchy and the values of the properties.
Dome does not support arbitrary constraints, although
several types of validity criteria can be expressed by us-
ing the Alter extension language. Also, Dome has some
further concepts to cover typical constraint situations (e.g.
dependent nodes).

The most important common feature of the tools in
this review is they all have integrated metaprogramming
environments to define the concepts to be used and rules
to be enforced throughout the modeling phase. The
metamodeling environments of DOME and GME are just

another kind of modeling paradigm (as defined by the
meta-metamodel). This not only demonstrates the capa-
bilities of the modeling tools, but also eases their leaning
curve. The MetaEdit+ tool has a more conservative and
simplistic approach: a series of dialog boxes for specify-
ing the metamodel in a non-graphical way.

While visualization is important in these tools, their
eventual goal is to extract information from the model
data in some programmatic way. All tools provide capa-
bilities for this model reporting or interpretation phase,
but with significant differences. MetaEdit+ has a rela-
tively simple, proprietary reporting definition language,
which makes it easy to generate simple reports. Attractive
ready-made report tools are provided with in the distribu-
tion that generate HTML and other documents, while the
user can write similar reports himself too. As its name
implies the report definition language is not a universal
programming language, and only read access to the
model data is provided. This is a serious shortcoming of
MetaEdit+.

Model interpretation in Dome is centered around its
scripting language, Alter, which is based on Scheme.
Alter has full access to the model database, and is used
extensively for checking constraints and providing cus-
tom-defined drawing, etc. Alter scripts are thus not only
able to read the model, but also to modify it, e.g. create
new entities.

An additional interesting feature in Dome is its visual
programming language, Projector, and the corresponding
modeling notation, which allows creating programs
through Dome itself. Projector is a data-flow like lan-
guage, and while it is admittedly not quite suitable for
creating a full complex program, it is a very attractive
way to integrate algorithms and operators written in Al-
ter.

Data access and standards-compliant extensibility
powerful features of GME, which identifies data and tool
integration as one of its primary application areas, for
several reasons. GME is completely component-based,
with public interfaces among many of its components.
Most notably, the visualization part and the model and
metamodel storage is separated by an interface which is
accessible to user-written components as well, thus giv-
ing access level identical to that of the native GME GUI.
Since the component model is COM, the primary lan-
guages for integration are C++ and Visual Basic, while
Java, Python, etc. access is also available. Access is bidi-
rectional, and fully transactional, which makes many “on-
line modeling” scenarios feasible (e.g. for application
monitoring).

Since programming at the component level is some-
what challenging (it requires advanced transaction control
and event handling), several alternatives provide reduced
functionality through simpler interfaces. First, the GME
pattern-based report language provides simple reporting
capabilities through the definition captured in a simple
text file. Second, the Builder Object Network maps
model data onto a C++ data network, resulting in a high-

level, extensible API that is much easier to use than the
native interface. Third, GME provides bidirectional XML
access for both model and metamodel information. And,
finally, the commercial data backends (repository and
relational databases) are also a feasible – albeit non-trivial
– way to access model data.

5. Conclusion

We presented the Generic Modeling Environment
(GME), a configurable modeling and program synthesis
toolset, that makes the rapid and cost-effective creation of
highly customized, domain-specific system design and
analysis environments possible. It is highly applicable to
intelligent signal processing and instrumentation domains
where flexibility and customizability are primary re-
quirements and hence, the commercially available envi-
ronments do not suffice.

6. Acknowledgements

The research described in this paper was funded in part
by the Defense Advanced Research Project Agency
(DARPA) and the Boeing Company.

7. References

[1] http://www.mathworks.com/
[2] http://www.ni.com/labview/
[3] J. Sztipanovits, G. Karsai: Model-Integrated Computing,

IEEE Computer, pp. 110-112, April, 1997.
[4] G. Nordstrom, J. Sztipanovits, G. Karsai, A. Ledeczi:

Metamodeling - Rapid Design and Evolution of Domain-
Specific Modeling Environments, Proceedings of the
IEEE ECBS'99 Conference, pp. 68-74, Nashville, TN,
April, 1999.

[5] GME 2000 Users Manual, Vanderbilt University, 2000.,
available from http://www.isis.vanderbilt.edu/publica-
tions.asp

[6] A. Ledeczi, J. Davis, S. Neema, B. Eames, G. Nordstrom,
V. Prasanna, C. Raghavendra, A. Bakshi, S. Mohanty, V.
Mathur, M. Singh: Overview of the Model-based Inte-
grated Simulation Framework, Tech. Report, ISIS-01-201,
January 30, 2001. available from http://www.isis.vander-
bilt.edu/publications.asp

[7] Domain-Specific Modeling: 10 Times Faster Than UML,
whitepaper by MetaCase Consulting available at
http://www.metacase.com/papers/index.html

[8] DOME Users’ Guide, available from http://www.htc.
honeywell.com/dome/support.htm#documentation

[9] SystemC User’s Guide, available from http://www.sys-
temc.org.

[10] D. Burger, T. Austin: The SimpleScalar Tool Set, Version
2.0, University of Wisconsin-Madison Computer Sciences
Department Technical Report #1342, June, 1997. avail-
able from http://www.cs.wisc.edu/~mscalar/simplesca-
lar.html

