GME Manual and User Guide

http://www.isis.vanderbilt.edu
Copyright © 2000-2018 Vanderbilt University

All rights reserved

Abstract

Generic Modeling Environment 18

Copyright © 2000-2018 Vanderbilt University

This program Is protected by U.S. and international copyright laws as described in the About Box.

The Generic Modeling Environment

Table of Contents

I 111l (U ot 1o o ISP PRRP 4
2. MOEliNg CONCEPLS OVEIVIBIW ...c.vvieiiiiiieeeeei e et e ettt e e e et e et e e e et e e e et e e e e et e e e eaaanas 5
2.1. Model-Integrated Program SYNthESISccuuuiiiiiiiiie e 5
2.2. The MUltiGraph ArChiteCtUrEiiiiii e e 5
3. The Generic Modeling ENVIFONMENTuuuiiiiiiiee et e e e e e e e e eaanas 7
3.1. GME Main Editing WINCOWcccuuuiiiiiiiieeiii et e e e e e eai e e 7
3.2, GIMIE CONCEPES ...ttt ettt ettt e et et e et e et e e et et e e et e e et e e e ta e e e eeeanas 8
4. USING GME ...ttt e e e e e aeenne 15
4.1, GME INEEIAOES ...veieiiiii ettt e et e e e e e e neneaeas 15
4.2, THE Part BIOWSESuiiieeeiiiiiiti ettt e ettt e e e e e et e e a e e e e e e en e e e 15
4.3. The AUIDULE BrOWSESiiieeiiieiiiie e e e e e nnreeens 15
4.4, THe MOUE! BIOWSESuuiieiiiieiiiti ettt e ettt e e e et e e e e e e eennnan s 16

http://www.isis.vanderbilt.edu

GME Manua and User Guide

N I o L= 1Y oo (= I o] (o PP 18

N 11410 = £ o) PR 23

4.7. Managing Paradigmsooiiiiiii e 24

T o (0 Q@ o= = 1 [0 '~ TS S 25

4.9, AULOROULES FEBLUINESuieiie ittt et e e et e e e e e e e e e annennes 28

4.10. Emergency saves and GME CrashDUMPSc.ueiiiiiiiiieiii e e e e e e e e 32

A.10. HEIP SYSIEIM ..t 33

4.12. SEarChing ODJECEScvuiiiii e e e e e e 34

I S o 1] o T T 1Y 36

L Y/ o L= 010 1= = o P 39
5.1. Attributes and PreferenCeSiviiiiiiiiii e 41

L I o= =P 42
B.1. Library REfTESN ... 42

6.2. Libraries and Metamodelingc.veiiiiiiiiiiii e 43

A D L= olo] = (o] = TP 46
7.1. The | MyaEl enent Decor at or interfacecoeveiiiiiii i, 46

7.2. Thel MpaEl enent Decor at or Event s interfaceoccoeeviiiiiin i 51

7.3. Visual Studio 2008 DeCorator WIZardcoeeuuieeeiiiiieeeiiiie e e e e e e 55

7.4. Using the Decorator sample/skel€ton COOEScovviiiiiiiiiiiiii e, 56
7.5.Usingthe Decorat or Li b libraryccooooviiiiiiii e, 56

7.6. Assigning decorators t0 ODJECEScvuuiiiii e 58

8. Metamodeling ENVIFONMENTuiiii i e e e e e e e e e e e e e et e e et eeaneeeees 59
8.1. Step by step guide to basic Metamodelingc.uvvviiiiiiiiie e 59

8.2. CompoSiNg MEtAMOUEISuiiiiieiii e e e e e e e e aeas 63

8.3. Generating the Target Modeling Paradigmc.ccciiiiiiiiiiiii e 65

8.4, AUIDULE GUITE ... e e et e e et e e e e et e eeeees 65

8.5. Metamodeling SEMENLICSuiiiriiiiiiiei e e e e e e e e e e eees 71

9. High-Level Component INtEIACEoiiuiiiii e e e e e e e 74
9.1. Builder Object Network Version 1.0ocvuuieiiiieiii e e e e e e e e e e e eees 74

9.2. Méeta OBJECt NEIWOIKuiiiiicii e e e e aens 82

9.3. Builder Object Network VErSion 2.0oiivniiiiiieiiieeie e e e e e e e e e e e eaes 86

9.4. How to create a Nnew COMPONENE PIrOJECE ...uvvuniiii e eeiieeeiiieeiieeei e e et e e e eaaneeeaneeeens 99

9.5. Extending the Component Interface using the BON Extender interpreter 99

O @] 1= = | /=T F=To [103
10.1. Features of the new Constraint Manageroeevuiiiiiiieiiie e e 103

10.2. Using ConstraiNntS in GMEoiiiiiiiiicii e e e e e e 109

YN © @ o o] P 118
L. OCL LANQUAGE .. euieniiiiie et e et e e e et e e e e e e e e e e e e e ae e en 119

R Y/ o T T @) 0] 4= o= 119

1.2, Context Of @ CONSITAINTceevveeeiiiiiie et e e e e e e e e eeenns 119

1.3. Types of Constraints (EXPreSSIONS) ...ccuuuiiiineeiieeeiiieeiieeea e et e e e s e e eeannns 120

1.4. CommMON OCL EXPrESSIONSuuiiiniiiiieeiiieetieeeetieesiee st eeeataeeeaeestaessnaessneens 121

1.5. Type Related EXPreSSIONSuuiiiiiiiiiieiie e e e e e e e e e e e aae e 125

1.6. RESOIULION RUIES ...covviieiii e e e 129

2. PredefiNed OCL TYPES «.vvui it eeeei e et e e e et s e e et e e e et e e e et e e e et eeeeaan s 133

2. L. OC & ANY i 133

2.2, 0C| i ST i NG e 134

P2 M o Tod B = o 107011 = A o o PP 135

24.0C| 11 BOOI AN oot 135

25.0C] 11 REAI e 136

2.6. OC| i i I Nt BOBT i 138

2.7, OC| i TY P it 139

28.0CH 1 COl 1 CLT ON o 139

P2 o Lo B = PN 141

GME Manua and User Guide

2250 0 o Tod I = 7= Vo 142

2250 T o Tod B Y=o 1V =] o o = S 143

3. GME Kinds and Meta-Kindscoovuuiiiiiiiiiiie e 146
3L OB 1 Q] BT it 146

3.2 gIME: i FOL I e 147

G Ao (S @ @ LS 147

I/ 111 = @ oY] o =T ok A] o K 150

30, gNE: I Ref I @NCE oo 150

B0, OB L Sl ittt 151

I o 1 £ = o] 1 £ [P PPRPTN 151

3.8. gIME: i MDABI e 151

3.0, OB I PrOf BCT o 152
3.10. gITE: i ROOL FOI AT ovniii i e 152
3.11. gnme: : Connecti ONPOI Nt .o 153
L1075 PN 154

GME Manua and User Guide

1. Introduction

The Generic Modeling Environment (GME), is a Windows®-based, domain-specific, model-integrated
program synthesis tool for creating and evolving domain-specific, multi-aspect models of large-scale
engineering systems. The GME is configurable, which meansit can be“programmed” to work with vastly
different domains. Another important feature isthat GME paradigms are generated from formal modeling
environment specifications.

The GME includes several other relevant features:

¢ Itisused primarily for model-building. The models take the form of graphical, multi-aspect, attributed
entity-relationship diagrams. The dynamic semantics of a model is not the concern of GME — that is
determined later during the model inter pretation process.

* It supports various techniques for building large-scale, complex models. The techniques include:
hierarchy, multiple aspects, sets, references, and explicit constraints. These concepts are discussed | ater.

* It contains one or more integrated model interpreters that perform translation and analysis of models
currently under devel opment.

In this document we describe the commonalities of GME that are present in all manifestations of the
system. Hence, we deal with general questions, and not domain-specific modeling issues. The following
sections describe some general modeling concepts and the various functions of the GME.

GME Manua and User Guide

2. Modeling Concepts Overview

2.1. Model-Integrated Program Synthesis

One approach to MIC is model-integrated program synthesis (MIPS). A MIPS environment operates
according to a domain-specific set of requirements that describe how any system in the domain can be
model ed. These modeling requirements specify the types of entities and rel ationships that can be modeled;
how to model them; entity and/or relationship attributes; the number and types of aspects necessary to
logically and efficiently partition the design space; how semantic information is to be represented in, and
later extracted from, the models; analysis requirements; and, in the case of executable models, run-time
requirements.

In MIPS, formalized models capture various aspects of a domain-specific system's desired structure
and behavior. Model interpreters are used to perform the computational transformations necessary to
synthesize executable code for use in the system's execution environment—often in conjunction with code
libraries and some form of middleware (e.g. CORBA, the MultiGraph kernel, POSIX) — or to supply input
data streamsfor use by various GOTS, COTS, or custom software packages (e.g. spreadsheets, simulation
engines) When changes in the overall system require new application programs, the models are updated
to reflect these changes, the interpretation process is repeated, and the applications and data streams are
automatically regenerated from the models.

Once a modeling paradigm has been established, the MIPS environment itself can be built. A MIPS
environment consists of three main components. (1) a domain aware model builder used to create and
modify models of domain-specific systems, (2) the models themselves, and (3) one or more model
interpreters used to extract and translate semantic knowledge from the models.

2.2. The MultiGraph Architecture

The MultiGraph Architecture (MGA) is atoolset for creating MIPS environments. As mentioned earlier,
MIPS environments provide ameans for evolving domain- specific applications through the modification
of models and re-synthesis of applications. We now discuss the creation of a MIPS environment.

2.2.1. The Modeling Paradigm

The process begins by formulating the domain's modeling paradigm. The modeling paradigm contains
all the syntactic, semantic, and presentation information regarding the domain — which concepts will be
used to construct models, what relationships may exist among those concepts, how the concepts may be
organized and viewed by the modeler, and rules governing the construction of models. The modeling
paradigm defines the family of models that can be created using the resultant MIPS environment.

Both domain and MGA experts participate in the task of formulating the modeling paradigm. Experience
has shown that the modeling paradigm changes rapidly during early stages of development, becoming
stable only after a significant amount of testing and use. A contributing factor to this phenomenon is the
fact that domain experts are often unableto initially specify exactly how the modeling environment should
behave. Of course, as the system matures, the modeling paradigm becomes stable. However, because the
system itself must evolve, the modeling paradigm must change to reflect this evolution. Changes to the
paradigm result in new modeling environments, and new modeling environments require new or migrated
models.

2.2.2. Metamodels and Modeling Environment Synthesis

Metamodels are models of a particular modeling environment. Metamodels contain descriptions of the
entities, attributes, and relationships that are available in the target modeling environment. Once a

GME Manua and User Guide

metamodel is constructed, it is used to configure GME. This approach allows the modeling environment
itself to be evolved over time as domain modeling requirements change.

GME Manua and User Guide

3. The Generic Modeling Environment

3.1. GME Main Editing Window

Thefigure below shows various features and components associated with the GME main editing window.

Figure 1. GME Main Editing Window

SF - SFDemot EEx
File Edit “iew Tools ‘Window Help
o0 Y- = BRCRCEREI R SR 31 58 50 P/ Loy EAENWE
Part Browser v X System - /SFDemol/Folder/ x Processing - fSFDemol [FolderfSystem) w | |GME Browser v X
=y SignaFlowdspect | Parsmeterdspect| | T Name:|System Compound Aspect | SignalFlowéspe v | Base: | MNA& Zoom: | 1003 | Agoregate | Inheritance | Meta
. Processing v
= %" SFDemal
o =23 Folder
X = System
fal PostProcessin
Tim[3 an & g
& Primitive Out[} IIin Fre} ez - [l PreProcessing
o - Processing
OutputSignal PreProcessing Processing PostProcessing
[o
- InputSignal
&
X
#
X
-1
b Compound
Eo Object Inspector - %
Processing
Attributes | Preferences | Properties
Panning YWindow - X
Console - X
=P Hel ol
Ready

The GME main editing window has the following components:

Titlebar: Indicates the currently loaded project.
Menubar: Commands for certain operations on the model.

Toolbar: Icon button shortcuts for severa editing functions. Placing the mouse cursor over a toolbar
button briefly displays the name/action of the button.

Modebar: Buttons for selecting and editing modes.
Editing areac The main mode! editing area containing the model editing windows.
Partbrowser: Shows the parts that can be inserted in the current aspect of the current model.

Statusbar: The line at the bottom, which shows status and error messages, current edit mode (e.g. EDIT,
CONNECT, etc.), zoom factor, paradigm name (e.g. SF), and current time.

Attribute Browser: Shows the attributes and preferences of an object.

GME Manua and User Guide

* Model Browser: Shows either the aggregation hierarchy of the project, the type inheritance hierarchy
of amodel, or aquick overview of the current modeling paradigm.

These features will be described in detail in later sections.

3.2. GME Concepts

As mentioned above, the GME is a generic, programmable tool. However, all GME configurations are
the same on a certain level, smply because “only” the domain- specific modeling concepts and model
structures have changed. Before describing GME operation, we briefly describe the domain-independent
modeling concepts embodied in all GME instances.

3.2.1. Defining the Modeling Paradigm

To properly model any large, complex engineering system, amodeler must be able to describe a system's
entities, attributes, and relationshipsin aclear, concise manner. The modeling environment must constrain
the modeler to create syntactically and semantically correct models, while affording the modeler the
flexibility and freedom to describe a system in sufficient detail to allow meaningful analysis of the models.
Issues such as what is to be modeled, how the modeling is to be done, and what types of analyses are
to be performed on the constructed models must be formalized before any system is built. Such design
choices are represented by the modeling paradigm. Therefore, creating the modeling paradigm isthefirst,
and most important, step in creating aDSME.

A modeling paradigm is defined by the kind of models that can be built using it, how they are organized,
what information is stored in them, etc. When GME is tailored for a particular application domain, the
modeling paradigm is determined and the tool is configured accordingly. Typicaly the end-users do not
change these paradigm definitions, and they are fixed for a particular instance of GME (of course, they
may change as the design environment evolves).

Examples of modeling paradigms are as follows:

 Paradigms for modeling signal flow graphs and hardware architecture for high-performance signal
processing domains.

 Paradigms for process models and equipment models used in chemical engineering domains.
 Paradigms for modeling the functionality and physical components of fault-modeling domains.

 Paradigmsthat describe other paradigms. These arereferred to as meta paradigms, and are used to create
metamodels. These metamodels are then used to automatically generate a modeling environment for
the target domain.

Once an initial modeling paradigm has been formulated, an MGA expert constructs a metamodel.
The metamodel is a UML-based, formal description of the modeling environment's model construction
semantics. The metamodel defines what types of objects can be used during the modeling process,
how those objects will appear on screen, what attributes will be associated with those objects, and how
relationships between those objects will be represented. The metamodel also contains a description of
any constraints that the modeling environment must enforce at model creation time. These constraints
are expressed using the standard predicate logic language, Object Constraint Language (OCL) with
some additional features and limitations according to metamodeling environment of GME. Note that, as
mentioned earlier, metamodels are merely models of modeling environments, and as such can be built
using the GME. A special metamodeling paradigm has been developed that allows metamodels to be
constructed using the GME.

Once a metamodel has been created, it is used to automatically generate a domain- specific GME. The
GME is then made available to one or more domain experts who use it to build domain-specific models.

GME Manua and User Guide

Typically, the domain expert'sinitial modeling effortswill reveal flaws or inconsistenciesin the modeling
paradigm. As the modeling paradigm is refined and improved, the metamode is updated to reflect these
refinements, and new GMEs are generated.

Once the modeling paradigm is stable (i.e. the MGA and domain experts are satisfied that the GME allows
consistent, valid model sto bebuilt), thetask of interpreter writing begins. | nterpretersare model translators
designed to work with all models created using the domain-specific GME for which they were designed.
The translated models are used as sources to analysis programs or are used by an execution environment.

Once the interpreters are created, environment users can create domain models and perform analysis
on those models. Note, however, that model creation usualy begins much sooner. Modelers typically
begin creating models as soon as the initial GME is delivered. As their understanding of the modeling
environment and their own systems grows, the models naturally become more complete and complex.

We now discuss the modeling components in greater detail.

3.2.2. Models

By model we mean an abstract object that represents something in the world. What a model represents
depends on what domain we are working in. For instance,

» aDataflow Block isthe model for an operator in the signal processing domain,
 aProcess model represents afunctionality in a plant in the chemical engineering domain,

» a Network model represents a hardware interconnection scheme in the multiprocessor architecture
domain.

A modé is, in computational terms, an object that can be manipulated. It has state, identity, and behavior.
The purpose of the GME is to create and manipulate these models. Other components of the MGA deal
with interpreting these models and using them in various contexts (e.g. analysis, software synthesis, etc.).

Some modeling paradigms have several kinds of models. For instance:

* in asignal processing paradigm there can be Primitive Blocks for simple operators and Compound
Blocks (which may contain both primitive blocks and other compound blocks) for compound operators.

 inamultiprocessor architecture modeling paradigm there can be models for computational Nodes and
models for Networks formed from those nodes.

A model typically has parts—other objects contained within the model. Parts come in these varieties:

» atoms (or atomic parts),

* other models,

« references (which can be thought of as pointers to other objects),

* sets (which can contain other parts), and

* connections.

If amodel contains parts, we say that the model isthe parent of its parts. Parts can have various attributes.
A special attribute associated with atomic parts allows them to be designated as link parts. Link parts act

as connection points between models (usually used to indicate some form of association, relationship, or
dataflow between two or more models). Models containing other models as parts are called compound

GME Manua and User Guide

models. Models that cannot contain other models are called primitive models. If a compound model can
contain other models we have a case of model hierarchy.

In the GME, each part (atom, model, reference, or set) is represented by an icon. Parts have a simple,
paradigm-defined icon. If no icon is defined for a model, it is shown using an automatically generated
rectangular icon with a 3D border.

3.2.3. Atoms

Atoms (or atomic parts) are simple modeling objects that do not have internal structure (i.e. they do not
contain other objects), although they can have attributes. Atoms can be used to represent entities, which
areindivisible, and exist in the context of their parent model.

Figure 2. A primitive model SubGener at or Ccontaining four atoms

File Edit “iew Tools Window Help

= Y # G @2 m S I A =8 Lo /L
SubGeneratorC - /SFDemol /Folder/System/PostProcessing/ X hd
o, T Name:| SubGenerator” Frimitive Aspect: | SignalFlowdspe v | Base: |NAA Zoom: [100%
=
® o

Size

A

£ [}] o
Channel Output
<
Fequency

&)

[

:.Q:I

X

*

X

®

L

Ready

Examples of atoms are as follows:
» An output data port on adataflow block in asignal processing paradigm.
A connection link on a processor model in a hardware description paradigm.

» A process variablein aprocess model in achemical engineering paradigm.

3.2.4. Model Hierarchy

As mentioned above, models can contain other models as parts — models of the same or different kind
as the parent model. Thisis a case of model hierarchy. The concept can be explained as follows: models
represent the world on different levels of abstraction. A model that contains other models represents
something on ahigher level of abstraction, since many detailsare not visible. A model that does not contain
other models represents something on a lower level of abstraction. This hierarchical organization helps
in managing complexity by allowing the modeler to present alarger part of the system, abeit with less
detail, by using ahigher level of abstraction. At alower level of abstraction, more detail can be presented,
but less of the system can be viewed at one time.

Examples where hierarchy is useful are asfollows:

 Hierarchical dataflow diagramsin asignal processing paradigm.

10

GME Manua and User Guide

» Process model hierarchy in achemical engineering paradigm.

 Hierarchically organized networks of processorsin a paradigm describing multiprocessors.

Figure 3. Compound model Super Gen containing several Gener at or models

File Edit “ew Tools ‘Window Help

il @B X9 # 3 ez e s Had 4 3 o d Ly
SuperGen - /SFDemol /Folder/System/PostProcessing X -
o, T Hame: |SupeiGen Compound Aspect | SignalFlomdspe % | Base: |NAb Zoom: [100%
=

2
&

4 in out[¥
ﬁ GeneratorA

]

P u)] outli——4
& Qut

In
X
GeneratorB

x i out[3

X
}E GeneratorC

Ready

3.2.5. References

References are parts that are similar in concept to pointers found in various programming languages.
When complex models are created (containing many, different kinds of atomic and hierarchical parts),
it is sometimes necessary for one model to directly access parts contained in another. For example, in
one dataflow diagram a variable may be defined, and in another diagram of the system one may want to
use that variable. In dataflow diagrams, this is possible only by connecting that variable via a dataflow
arc, “going up” in the hierarchy until alevel is reached from where one can descend and reach the other
diagram (arather cumbersome process).

GME offers a better solution — reference parts. Reference parts are objects that refer to (i.e. point to)
other modeling objects. Thus, a reference part can point to a model, an atomic part of a model, a model
embedded in another model, or even another reference part or a set. A reference part can be created only
after the referenced part has been created, and the referenced part cannot be removed until all references
to it have been removed. However, it is possible to create null references, i.e. references that do not refer
to any objects. One can think of these as placeholders for future use. Whether a particular reference can
be established (i.e. created) or not depends on the particular modeling paradigm being used.

Examples of references are as follows:
» Referencesto variables in remote dataflow diagramsin a signal processing paradigm.
» References to equipment modelsin a process model in a chemical engineering paradigm.

» Referencesto nodes of amultiprocessor network in aparadigm describing hardware/software all ocation
assignments.

As mentioned above, the icon used to represent the reference part is user-defined. Model (or model
reference) references that do not have their own icon defined have an appearance similar to the referred-
to model, but without 3D borders.

11

GME Manua and User Guide

3.2.6. Connections and links

Merely having partsin amodel is not sufficient for creating meaningful models — there are relationships
among those parts that need to be expressed. The GME uses many different methods for expressing these
relationships, the simplest one being the connection. A connection is a line that connects two parts of a
model. Connections have at least two attributes: appearance (to aid the modeler in making distinctions
between different types of connections) and directionality (as distinguished by the presence or absence of
an arrow head at the “destination” end of the line). Additional connection attributes can be defined in the
metamodel, depending on the requirements of the particular modeling paradigm.

The actual semantics of a connection is determined by the modeling paradigm. When the connection is
being drawn, the GME checks whether the connection is legal or not. All legal connections are defined
in the metamodel. Two checks are made to determine the legality of a connection. First, a check is made
to determine if the two types of objects are allowed to be connected together. Second, the direction of the
connection needs to be checked.

To make connections, the modeler must place the GME in the “ Add Connections” mode. Thisis done by
clicking onthe Connections mode button (seefigureto | eft) onthe Modebar. A connection always connects
two parts. If the part is an icon that represents a model, it may have some connection points, or links.
Logicaly, alink is a port through which the model is connected to another part within the parent model.
Links on amodel icon represent specific parts contained in the model that areinvolved in aconnection. In
these cases, when the connection is established, care should be taken to build the connection with the right
link. Thelink shows up on theicon of the model part asaminiatureicon with alabel. When the connection
is built, the system uses these miniature icons as sensitive “pads’ where connections may start or end.
Moving the mouse cursor over one of the pads shows the complete name of thelink part. Furthermore, not
only atoms, but models, sets and references except for connections can act as a ports.

Some examples of connections and links are as follows:

 Connections between dataflow blocks in a signal processing paradigm.

 Connections between processes on a process flow sheet of achemical engineering paradigm.
 Connections between failure modes (indicating failure propagation) in afault modeling paradigm.

Connections can be seen between atomic parts and models, asin the case of thel nput Si gnal atomic
part connecting to the ports labeled “In” on each of the Gener at or models shown earlier, and between
ports of models, asin the case of the “Qut ” ports of each Gener at or model connecting to the“In” port
of another Gener at or model. Noticethat, in this paradigm, connections are directional (used to indicate
information flow between the models).

3.2.7. Sets

Models containing objects and connections show a static system. In some cases, however, it is necessary
to have a model of a dynamic system that has an architecture that changes over time. From the visual
standpoint this means that, depending on what “state” the system is in, we should see different pictures.
These“ states” are not predefined by the modeling paradigm (in that case they would be aspects), but rather
by the modeler. The different pictures should show the same model, containing the same kinds of parts,
but some of the parts should be “ present” while others should be “missing” in a certain “states.” In other
words, the modeler should be able to construct sets and subsets of particular objects (even connections).

In GME, each set is represented by an icon (user-defined or default). When a particular set is activated,
only the objects belonging to that set are visible (all other parts in the model are “dimmed” or “grayed
out.”) Parts may belong to asingle set, to more than one set, or to no set at all.

12

GME Manua and User Guide

To add or remove parts from sets, the set must first be activated by placing the graphical editor into Set
Mode. Thisisdone by clicking the Set Mode button (see |eft) on the edit mode bar. Next, a set is activated
by right-clicking the mouse on it. Once the set has been activated, parts (even connections) may be added
and/or removed using the left mouse button. To return to the Edit Mode, click the Normal Mode button
on the edit mode bar.

The following examples of using sets:
 State-dependent configuration of processing blocksin asignal processing paradigm.
 State dependent process configuration in achemical engineering paradigm.

* State-dependent failure propagation graphs in afault modeling paradigm.

3.2.8. Aspects

As mentioned earlier, we use hierarchy to show or hide design detail within our models. However, large
models and/or complex modeling paradigms can lead to situations where, even within a given level of
design hierarchy, there may be too many parts displayed at once. To alleviate this problem, models can
be partitioned into aspects.

An aspect is defined by the kinds of parts that are visible in that aspect. Note that aspects are related to
groupsof parts. Theexistence or visibility of apart withinaparticular aspect isdetermined by themodeling
paradigm. A given part may a so be visible in more than one aspect. For every kind of part, there are two
kinds of aspects: primary and secondary. Parts can only be added or deleted from the model from within
its primary aspect. Secondary aspects merely inherit parts from the primary aspects. Of course, different
interconnection rules may apply to partsin different aspects.

When amodel is viewed, it is aways viewed from one particular aspect at atime. Since some parts may
be visible in more than one aspect while others may visible only in a single aspect, models may have a
completely different appearance when viewed from different aspects (after all, that's why aspects exist!)

The following are examples of aspects:
» “Signal Flow” and “ States” aspects for asignal processing paradigm.
* “Process Flow Sheet” and “ Process Finite State Machine” aspectsfor achemical engineering paradigm.

» “Component Assignment” and “Failure-Propagation” aspects of afault- modeling paradigm.

3.2.9. Attributes

Models, atoms, references, sets and connections can all have attributes. An attribute is a property of an
object that is best expressed textually. (Note that we use the word “text” for anything that is shown astext,
including numbers, and a choice from afinite set of symbolic or numeric constants.)

Typically objects have multiple attributes, which can be set using “non-graphical” means, such as entry
fields, menus, buttons, etc. The attribute values are translated into object values (e.g. numbers, strings, etc.)
and assigned to the objects. The modeling paradigm defines what attributes are present for what objects,
theranges of the attribute values, etc. Interpreting these valuesis|eft to the model interpreters, though the
users may create constraints using OCL for the attributes to ensure that their values are valid.

Examples of attributes are as follows:
» Datatype of parametersin asignal processing paradigm.

* Unitsfor process parametersin achemical engineering paradigm.

13

GME Manua and User Guide

3.2.10.

» Mean-time-between-failure specifications for components in afault modeling paradigm.

Figure 4. The attribute box associated with an atom called y

¥

Aftributes | Preferences | Properties
Data Type inputT ype

An object's attributes can be accessed by right-clicking on the object and selecting Attributes from the
menu, causing the Attribute Browser to be activated.

Preferences

Preferences are paradigm-independent properties of objects. The five different kinds of first class objects
(model, atom, reference, connection, set) each have a different set of preferences. The most important
preference is the help URL. Othersinclude color, text color, line type, etc. Preferences are inherited from
the paradigm definition through type inheritance unless this chain is explicitly broken, by overriding an
inherited value. For more details, see the chapter on type inheritance.

Prefer ences are accessible through the context menus and for the current model through the Edit menu.

Default preferences can be specified in the paradigm definition file (XML). User settings can be applied
to either the current object, or the kind of object globally in the project. The checkbox in the preferences
dialog box specifies this scope information. If the “for Kind” checkbox is set, the information is stored in
the compiled, binary paradigm definition file, not in the XML document. This means that a subsequent
parsing of the XML file overwrites preference settings. Thislimitation will be eliminated in alater release
of GME.

Even when the globa scope is selected, this only applies to objects that themselves (or any of their
ancestors) have not overridden the given preference.

14

GME Manua and User Guide

4. Using GME
4.1. GME Interfaces

The GME interacts with the user through two major interfaces:
» the Model Browser, and
 the Graphical Editor.

Models are stored in a model database and are organized into projects. A project is a group of models
created using a particular modeling paradigm. Within a project, the models are further organized into
modeling folders. Folders themselves and modelsin one folder can be organized hierarchically, athough
standal one models can also be present.

The M odel Browser isused to view or look at the entire project “at aglance.” All models and folders can
be shown, and folders, models and any kind of parts can be added, moved, and deleted using the M odel
Browser controls. Thisis described in more detail below.

4.2. The Part Browser

The Part Browser window showsthe partsthat can beinserted into the current model in the current aspect.
It shows all parts except for connections. At the bottom of the Part Browser, tabs show the available
aspects of the current model. Clicking on atab will change the aspect of the current model to the selected
one. It also attempts to change the aspect of all the open models. If a particular model does not have the
given aspect, its current aspect remains active.

The Part Browser can be used to drag a single object at atime and drop it either in any editor window
or in the Model Browser. If areference is dragged, a null reference is created because the target object
is unspecified. Remember that references (null references included) can be redirected at any time by
dropping a new target on top of them (see more detailed discussion where the drag and drop operations
are described).

Note that the Part Browser window, just like the Model Browser window, is dockable; it can float as an
independent window or it can be docked to any side of the GME Main window.

4.3. The Attribute Browser

Attributesand Preferences are available in amodeless dialog box, called the Attribute Browser. There
isno OK button; changes are updated immediately. More precisely, changes to toggle buttons, combo
boxes (i.e. menus) and color pickers are immediate. Changes to single line edit boxes are updated when
either “Enter” is hit on the keyboard or the edit box loses the input focus, i.e. you click outside the box.
The only difference for multiline edit boxesisthat they use the Enter key for new line insertion, so hitting
it does not update the value.

The object selection for the attribute browser works as follows. The context menu access to Attributes,
Preferences,and the Model Browser works. Furthermore, simply selecting an object or inserting,
dropping or pasting it selects that object for the Attribute browser. If more then one object is selected —in
the Model Browser or inthe Model Editor - the attribute browser will alow only the common attributes
of these objects.

At the top of the dialog there are three tabs, one for the attributes one for the preferences and another for
the properties. Note that the Attribute Browser window, just like the Model Browser window, is dockable;
it can float as an independent window or it can be docked to any side of the GME Main window.

15

GME Manua and User Guide

4.4. The Model Browser

As mentioned earlier, the GME is a configurable graphical editing environment. It is configured to work
within a particular modeling paradigm via a paradigm definition file. Paradigm definition files are XML
files that use a particular, GME specific Document Type Definition (DTD). Models cannot be created
and edited until a paradigm definition file (or its compiled, binary version with .mta extension) has been
opened.

Once a project has been loaded, the GME opens a Model Browser window. The Model Browser is
primarily used to organize theindividual modelsthat make up an overall project, while the graphical editor
isused for actually constructing the project's individual models.

Figure5. Model Browser showing folders and models.

Aggregate | Inheritance | Meta
Jemo]| b
= %" SFDemal
=13 Folder
= System
=)l PostProcessing
+-fdl SubGenerators
+- [l SuperGen
@
@2
=-JEl] PreFrocessing
i@ Out
=)| Processing
+-$4d BranchDd
w-[a Branchi
i@ Freq
@ In
@ Time

The most important high-level features of the Model Browser are accessible through the three tabs
displayed at the top of the Model Browser. These tabs deal with the Aggregate, I nheritance, and M eta
hierarchies.

The Aggr egate tab contains a tree-based containment hierarchy of all folders, models, and parts from the
highest level of the project, the Root Folder. The aggregate hierarchy isignorant to aspects, and is capable
of displaying objects of any kind. More information on the aggregate hierarchy will be provided shortly.

Figure 6. M odel Browser with each tab selected

Agaregate || Inheritance | Meta Aggregate | Inheritance | Meta Agoregate | |nhertance | Meta
RootFolder - GeneratorBase R 56 v
= % RootFalder A = |6l GenerstorBase = %’ SFDemal A
= .Q Compound [Compound] 5 [l SubGenBase =3 BasicTypes
Tdl CompoundParts (Compound) = | GeneratorBase
%8 DFC (DataflowConn) 5 [l SubGenBase
B4 InputParameters (InputParam) =3 Folder
@] InputSignals nputSignal] =) System
i) OutputParameters [OutputParam] =] PostProcessing
&j OutputSignals [JutputSignal) = SubGeneratoriC
=8 Parameters (Param]] Channel
& DataType: Q Fequency
4 Global) Dutput
Size 7 Siee
4 Walue: = SuperGen
8 PC (ParameterConn] = I Generatard,
Tal PrimitiveParts [Primitive) @ In
- Folder [Folder] W Out
=L Primitive (Primitive] = GeneratorB
Firing B In
) InputParameters (InputParam] @) Out
&j InputSignals [InputSignall e -4 GeneratorC -

The Inheritance tab is used explicitly for visualizing the type inheritance hierarchy (described in detail
later). Itisentirely driven by the current model selection within the aggregate tree. For example, the current

16

GME Manua and User Guide

selection in the aggregate tree in the figure above is amodel "GeneratorBase". It has one subtype, called
“SubGenBase”, and two instances, bearing the name “ GeneratorA” and “ GeneratorB” . This type/instance
relationship isshown inthe Inheritancetab. We al so have an instance model of the* SubGenBase” subtype,
called “SubGenBase”. In the Aggregate tab the letter “S’ denotes a subtype, while a letter “I” can be
found in front of instances.

The M eta tab shows the modeling language at a glance: it displays the legally available array of Folders
and objectsthat can be added at any level within the aggregate hierarchy. For example, at the " Root Folder"
level we can add "Folder" folders. Within these folders, we can add models Primitive and Compound.
From these models, more parts can be added.

4.4.1. Model Browser navigation

Arrow keyscan navigatethe selectionin vertical directions. The[Backspace] key movesthe selectiontothe
parent object. The[Delete] key allow for deletion of the current selection. Object name editing is achieved
through delayed clicking on an object's name. Multiple selection is achieved through [Shift] or [Control]
clicks. Incremental searching is offered for al three tabs through the text entry field immediately below
the Aggregate, Inheritance, and Meta tab selections. The search is limited to the currently expanded
section of the tree to avoid time-consuming search in a potentialy large database. If a global search is
desired, pressing the [Asterisk] key when the root folder is selected fully expands the tree and the search
becomes project-wide.

Most hidden functionality offered within the GME Browser is available through contextual menus and
drag and drop operations. Currently contextual menus are only offered for selections found within the
Aggregate tab. Contextual information is primarily used for easily inserting new objects based on the
current selection, or for capturing the contents of current selections for Edit functions (Copy, Paste,
Delete, etc.).

Figure 7. Model Browser context menus

GME Browser x

Agaregate | |nheritance | Meta

GeneratoiBass
= %’ SFDemol ~
=-{Z BasicTypes
=)l Generatord
5 o Su
= Folder
=)l Spstem
=] PostP1 Registry...
ER S Insert Atom InputParameters
Insert Madel ¥ InputSignals
Q OutputParameters
Undo

Properties
Attributes
Preferences

Q OutputSignals
= J| St Parameters
= oy
Copy Closure
Copy Smatt
&l
Paste Special 3
e Delete
-l
Canstraints 3
Inkerpret
Access 3
Multi-User 3
Help

Tree Browser Options...

Based on the Aggr egate tab sel ection shown above, five different kinds of atomsare availablefor insertion
(Models can also be inserted, but within this Model we have specified that the paradigm not allow any
References or Sets). Note that connections cannot be added using the Browser .

Similarly, several Edit options are availablein theform of Undo, Redo, Copy, Paste, etc. Sorting options
allow for theall of theobjectsand their children to be sorted by aspecific style. The Tree Browser Options

17

GME Manua and User Guide

menu item displays a dialog used for specifying the types of objects to be displayed in the Aggregate
tab. For example, the user can choose not to view connections in the browser. To preserve the state of
the aggregate tree (eg..expanded objects) in the Windows registry the checkbox in bottom of the options
dialog must be set. I nterpreting, Constraint Checking, and context sensitive Help are also available.

Drag and drop is implemented in the standard Windows manner. Multiple selection items may serve as
the source for drag and drop. Modifiers are important to note for these operations:

» No modifier: Move operation

[Ctrl]: Copy (signified by "plus" icon over mouse cursor)

[Ctrl]+[Shift]: Create reference (signified by link icon over mouse cursor)

[Alt]: Create Instance (signified by link icon over mouse cursor)

[Alt]+[Shift]: Create Sub Type (signified by link icon over mouse cursor)

If a drop operation fails, then a dialog will indicate so. Drop operations can occur within the Browser
itself, allowing this to be an effective means to restructuring a hierarchy. Drop operations can only be
performed onto a Model or a Folder.

4.4.2. Model Browser and Interoperation

Double-clicking on any model inthetree (or pressing the [Space] or [Enter] key when amodel is selected)
will open that model for editing in the graphical model editor. Double-clicking an atom, reference or set,
will open up the parent model, select the given object and scroll the model, so that the object becomes
visible.

4.5. The Model Editor
4.5.1. The Editing Window

When a model is selected for editing, an Editor window opens up to alow editing of that model. The
Editor window shows the contents of the selected model in one aspect at atime.

Figure8. A typical model Editor window with an open context menu.

System - /SFDemo1 /Folder; x -

T Hame:| Spstem Compound Aspect: | SignalFlowbspe % | Base: NAA Zoom: [100%

Properties

Preferences
Tim[} ' L2l
Outl} Din Fre[} 132 Annotations
Reqistry
PreProcessing Processing PostPr, Insert New Madel 3

Insert New Atom 13

Insert Annotation

Marme Location 3

Copy
Copy Closure
Copy Smart

Paste Special 3
Delete

Tnterprat
Cherk.
Locate

Help

18

GME Manua and User Guide

A typica Editor window is shown above. The status line near the top begins with an icon indicating
whether the current model is a type (T) or instance (I). Next to it is a field indicating the model's
name — Syst emin this case. Next to the model's name is the kind field, indicating the kind of model
(e.g. Connect or, Conpound, Net wor k, etc.) being edited. Continuing to the right, the Aspect field
indicatesthat thismodel isbeing viewed inthe Si gnal Fl owAspect . Remember, amodel's appearance,
included parts, and connection types can change as different aspects are selected. Finally, the right side of
the status line shows the base type of thismodel in caseitisamodel type (if it is an archetype, it does not
have a base type, so the field shows N/A), or the type model in case the current model is an instance.

4.5.2. GME Menus

On the GME Menubar, the following commands are available:

File The File menu is context-sensitive, with choices depending on whether or not a paradigm
definition file and/or project has been loaded and whether there is at least one M odel Editor
window open. If no Model Editor window is open, the following items show:

New Project: Creates anew, empty project and allows registering a new modeling paradigm
(discussed in detail later).

Open Project: Opens an existing project from either a database or abinary file with the . mga
extension (discussed in detail later).

Close Project: Saves and closes the currently open project (if any).

Save Project: Savesthe current project to disk.

Save Project As. Savesthe current project with a new name.

Abort Project: Aborts all the changes made since last save and closes project.

Export XML: GME uses XML (with a specific DTD) as a export/import file format. This
command saves the current project in XML format.

Import XML: Loadsapreviously exported XML project file. Note that the file must conform
to the DTD specifications in the mga.dtd file. If no paradigm is loaded, GME tries to locate
and load the corresponding paradigm definitions.

Update through XML : Allows updating the current model in case of a paradigm change. If
the user has a project open in one GME, while she modifies the metamodels in another GME
and regenerates the paradigm, this command allows updating the models by automatically
exporting to XML and importing from it. Note that any changes that invalidate the existing
models, for example deleting a model kind that has instances in the project, will cause this
operation to fail. However, adding new kinds of objects, attributes, etc, or deleting unused
concepts will work.

Exit: Closes GME.

If aModel Editor window is open, the following options are available:

Close M odel: Closes the current M odel Editor window.

Print: Allows the user to print the contents of the currently active M odel Editor window. It
scales the contents to fit on one page.

Print Setup...: Standard Windows functionality.

19

GME Manua and User Guide

e Print to Metafile
Tools TheToolsmenuisalso context-sensitive. If no project isopen, thefollowing itemsareavailable:
» Register Paradigms: Registers a new modeling paradigm (discussed in detail |ater).

* Options. Sets GME-specific parameters. Currently, the only supported options are to set
the path where the icon files are located on the current machine and whether GME should
remember the state of the docking windows. For the paths the user can type in a semicolon
separated list of directories (the order is significant from left to right), or use the add buttonin
the dialog box to add directories one-by-one utilizing a standard Windows File Dialog box.
Icon directories can be set for system-wide use or for the current user only. GME searches
first in the user directories followed by the system directories.

AutoRouter related features are configurable here also. The global auto-routing policy can be
turned on/off (for more information please check out the section on AutoRouting). Y ou can
also set if the AutoRouter should avoid labels with the connection lines or not (the default
setting is off). The connection horizontal/vertical snap treshold angle comesto play when you
edit fully customizable connections. In that case this angle is used to determine if snapping
should be applied or not. You should give the angle in degrees and not in radian. Holding
down the control key supresses the snap algorithm. For further details please check the secion
on AutoRouting.

In the Miscellaneous group the edge and the font smoothing mode can be controlled
distinctively besides many other things.

Figure 9. GME properties, edge and font smoothing options

|'Cu-‘.£ PrOpEriies: a‘

User |con Path
Add.

System loon Path
$PARADIGMDIRNicons $PROJECTDIRNcons Add,

Fultiine Attributes
[Enable External Text Editar

Autozave
[] Enable Autasave Save every seconds

Autorouter
[[] Connections keep clear of labels Use auto routing by default

Cann. custamize horz. /vert. edge snap treshald angle[deg] 4.000000

Seipting
Current script engine: HML
VB Script
VB SciiptEncode
Python.&%Script.2
JSciipt
J5ciipt Encode
PerlScript |
"SignedlavaSeript”

Misc
Drefault zoom walue: 100% Undo queue size: 10

Double attribute format: | %12 Mavigation Histary
[] Open madel in multiple views [] Enable Evert Logging
[Mouse Ower Object Motify [[] Cansole Timestamping

Edge Smoaoth mode: | High Quality Made

Font Smooth mode: Anti Alias

| ok Cancel

20

GME Manua and User Guide

If you find that your monitor displays the lines in a blurry manner, edge/font smoothing (or
also called anti-aliasing) can be the source of the problem besides the monitor's settings. If
you turn off the anti-aliasing completely, you will have a more crisp outline of curves and
fonts, but it can be also not nice to the human eyes. With these setting the choice is upon you.

Multi-User | Active Users...

Multi-User | Subversion...

After aproject has been loaded or created, the following menu items are active:

Constraints | Check All: Invokes the Constraint Manager to check all constraints for the
entire project.

Constraints | Display Constraints: All the constraints defined in the metamodel are
displayed. These constraints can be disabled globally, or on object basisin thisdialog. Options
of constraints’ evaluation are also available.

Register Components. Registersan interpreter DLL with the current paradigm. A dial og box
appears that makes it possible to register as many interpreters as the user wishes.

Multi-User | Refresh SourceControl Status...

Multi-User | Show Owner ...

Once aModel Editor window is open, the following additional items become available:

Run Interpreter: As mentioned earlier, model interpreters are used in the GME to extract
semantic information from the models. This menu choice invokes the model interpreter
registered with the paradigm using the currently selected model as an argument. Depending
on the specific paradigm and interpreter, such an argument may or may not be necessary.
A submenu makes it possible to select an interpreter if there is more than one interpreter
available.

Run Plug-Ins: Plug-ins are paradigm independent interpreters. This command makes it
possible to run the desired one.

Constraints| Check: Invokesthe Constraint Manager to check the constraints for the current
model.

After aproject has been loaded or created, the following menu items are active:

Edit

¢ Undo, Redo: Thelast ten operations can be undone and redone. These operationsare project-
based, not model/window-based! The Browser, Editor, and interpreters share the same undo/
redo queue.

» Clear Undo Queue: Models that can be potentially involved in an undo/redo operation are
locked in the database (in case of a database backend, as opposed to the binary file format),
so that no other user can have write access to them. This command empties the undo queue
and clears the locks on object that are otherwise not open in the current GME instance.

¢ Find: Find model elements. Thismenuitemisdiscussed in detail in Section 4.12, “ Searching
Objects’.

» Project Properties: Thiscommand displays adialog box that makesit possibleto edit/view
the properties of the current project. These propertiesinclude its name, author, creation and

21

GME Manua and User Guide

View

Window

Help

last modification date and time, and notes. The creation and modification time stamps are
read-only and are automatically set by GME.

Items available only when amodel Editor window is open:

» Show Parent: Active when the current model is contained inside another model. Selecting
this option opens the parent model in a new editing window.

» Show Basetype: Active when the current model is a type model but not an archetype (i.e.
it is not aroot node in the type inheritance hierarchy). This command opens the base type
model of the current model in an editing window.

» Show Type: Active when the current model is an instance model. This command opens the
type model of the current model in an editing window.

» Copy, Paste, Delete, Select All: Standard Windows operations.

» Paste Special: A submenu makes it possible to paste the current clipboard data as a
reference, subtype or instance. Paste Special only works if the data source is the current
project and the current GME instance.

» Delete: Removes the selected model element(s)
e Cancel: Used to cancel a pending connect/disconnect operation.
» Clear Console: Empties the GME console

» Preferences. Showsthe preferences available for the current model (see detailed discussion
in a separate section below).

« Annotations: Shows the Annotations dialog.

* Registry: The registry is a property extension mechanism: any object can contain an
arbitrarily deep tree structure of simple key-value pairs of data. Selecting this menu item
opens up asimple dialog box where the current object's registry can be edited. Special care
must be taken when editing the registry, since it is being used by the GME GUI to store
visualization information and domain-specific interpreters may useit too.

» Synch Aspects: Thelayout of objectsin an aspect isindependent of other aspects. However,
using this functionality, the layout in one source aspect can be propagated to multiple
destination aspects. A dialog box enables the selection of the source and destination aspects.
Theobjectsthat participatein thisoperation can also be controlled here. The default selection
is al the visible objects in the source aspect if none of them were selected in the editing
window, otherwise, only the selected ones. Two check boxes control the order in which
objectsare moved. Thisisimportant in case objects competefor the samereal estate. Priority
can be given to the selected objects and within the selected objects the ones that are visible
in the source aspect.

* Reset Stick Settings

Allows the toggling on and off of the Toolbar, the Status Bar (bottom of the main window),
the Browser window, the Attribute Browser, and the Part Browser window.

Cascade, Tile, Arrange | cons: Standard Windows window management functions.

» Contents: Accesses the SIS web server and shows the contents page of this document.

22

GME Manua and User Guide

» Help: Shows context-sensitive, user-defined help (if available) or defaultsto the appropriate
page of this document. See details in a subsequent section.

» About: Standard Windows functionality.

4.6. Annotations

GME provides annotations for attaching notes to your models. These multi-line textual annotations are
paradigm independent and availablein al of your models.

Annotations are not aligned to the model grid (as opposed to real modeling entities), and they can overlap
each other, but they are always lower in the Z-order than normal objects. Like every modd contained
artifact, the visibility and position of annotations are aspect dependent.

4.6.1. Creating Annotations

You can create a new annotation in an opened model from the context menu Insert Annotation if you
right-click on an empty areain the model. GM E generates a name for your annotation, and normally there
is no need to modify this. It also opens the Annotations dialog where you can customize the text and
appearance of your comment.

4.6.2. Editing Annotations

There are several methods for editing your annotations. Y ou can open the Annotations dialog from the
main menu bar Edit | Annotations or from the context menu Annotations.

Figure 10. Annotation editor
[———)

Marne: | Spstem Kind : | Compound Role: |MA&

Nare Text | Anrotation

Annatation The PreProcessing model connects t.. Mame: | Annotationd
Annatation] This diagram contains the definition a...

coo: I |-
Backgou: N -
I

[Gradient Fill
[Cast shadow

[Round rect

Fort (-]

Vigibility
Aspect w144
DEFAULT
SignalFlowdspect o« |18
[] Parameterdspect
[] Default Pos

Ontheleft side of thedialog in thefigure above all the annotationsin the active model are available. Onthe
right-hand side panel you can customize the selected commentary. The Name, Text, Color, Background

23

GME Manua and User Guide

and Font settings are self-explanatory. The Visibility sub-panel enables you to fine tune the position and
visibility in an aspect based manner. All the aspects of the active model (and a special DEFAULT aspect)
are listed on the left side. The checkboxes represent the visibility information in the proper aspect (if
an annotation is visible in the DEFAULT aspect, it is visible in al the others, so in this case the other
checkboxes areirrelevant.) Inthe X and Y input boxes you can specify the position of your annotationin
a specific aspect (or the default position.) You can aso clear (and set to default) the position with setting
the Default Pos check-box.

4.6.3. Implementation issues

Annotations are stored in the registry of the model. All the registry keys and explanation of them can be
found in the table below. The visualization of annotations is handled by custom decorator COM objects
Mya. Decor at or . Annot at or), which use the very same infrastructure as other custom drawing
objects.

Table 1.

Registry Key Description

/annotations Thisistheroot registry key for annotations

/annotations/<AnnotationName> The value of thiskey isthe text of the comment

/annotations/<AnnotationName>/color This key stores the text color of the comment as a
24 bit hexadecimal number

/annotations/<AnnotationName>/bgcol or This key stores the background color of the
comment as a 24 bit hexadecima number

/annotations/<AnnotationName>/font The encoded form of the specified font (Win32
LOGFONT structure)

/annotations/<AnnotationName>/aspects Thekey stores the default position of the annotation

/annotations/<AnnotationName>/aspects/* If this key is defined the annotation isvisible in all
aspects

/annotations/<AnnotationName>/aspects/ If defined, the annotation is visible in the specific

<AspectName> aspect. If it contains a position code, thiswill be the
position of your comment in this aspect.

4.7. Managing Paradigms

The Register Paradigm item in the Tools menu displays a dialog box where the user can add or modify
paradigms. This dialog box is aso displayed as the first step of the New Project command (see below).

Like other items recorded in the Windows registry, paradigms can be registered either in the current user's
own registry [HKEY_CURRENT_USER/ Sof t war e/ GVE/ Par adi gns] or in the common system
registry [HKEY_LOCAL_MACHI NE/ Sof t war e/ GVE/ Par adi gns]. If aparadigmisregisteredin both
registries, the per-user registry takes precedence. When changing the registration of paradigms it can be
specified where the changes are to be recorded. Non-administrator users on Windows systems generally
do not have write access to the system registry, so they can only change the per-user registration.

Paradigms are listed by their name, status, connection string and current version I1D. The name is what
primarily identifies the paradigm. The status is 'u' (user) or 's (system) depending where the paradigm
is registered. The connection string specifies the database access information or the file name in case of
binary files. Version ID isthe ID of the current generation of the paradigm.

The registry access mode is selectable in the lower right corner of the dialog box.

24

GME Manua and User Guide

Pressing the Add from file... button displays afile dialog where the user can select compiled binary files
(.mta) or XML documents. It is possible to store paradigm information in MS Repository as well. The
Add from DB... button is used to specify paradigms stored in a database, like MS Access.

If the new paradigm specified was not yet registered, it will be added the list of paradigms. If, however,
the paradigm is an update to an existing paradigm, it will replace the existing one, but the old paradigmis
also kept as aprevious generation. (The only exception iswhen the paradigms are specified in their binary
format (i.e. not XML) and the file or connection name of the new generation corresponds to that of the
previous one.) Thisway existing models can still be opened with the legacy paradigms they were created
with. For new models, however, the current generation is used aways.

Paradigms can be unregistered using the Remove button. Note that the paradigm file is not deleted.

Different generations of an existing paradigm can be managed using the Pur ge/Select button. This brings
up another dialog showing all the generations of the selected paradigm. One option is to set the current
generation, the one used for creating new models. The other option allows unregistering or also physically
deleting one or several of the previous generations. (Whether the files are deleted is controlled by the
checkbox in the lower right corner.)

I mportant

New paradigm versions are not always compatible with existing binary models. If a model is
reopened, GME offers the option to upgrade it to the new paradigm. If the upgrade fails, XML
export and re-import is needed (the previous generation of the paradigm isto be used for export).
XML is usualy the more robust technique for model migration; it only fails if the changesin
the paradigm make the model invalid. In such a situation the paradigm should be temporarily
reverted to support the existing model, edited to eliminate the inconsistencies, and then reopened
with the final version of the paradigm.

4.7.1. New Project

Selecting the New Proj ect item in the File menu displays the dial og box described in the previous section.
All the features mentioned are available, plus an additional button, Create New... whichisused to proceed
with the creation of a new project.

Once the desired paradigm is selected, pressing the OK button displays another small dialog where the
user can specify whether to store the new project in MS Repository or abinary file. Pressing OK creates
and opens a new blank project. At this point, the only object available in the project is the root folder
shown in the Model Browser. Using the context menu (right-clicking the Project Name), the user can
add folders and other objects, as defined in the paradigm. Double-clicking a model opensit up in a new
Editor window.

4.8. Editor Operations

Using the Editor window the user can edit the models graphically. Menus and editing operations
are context sensitive, preventing illegal model construction operations. (Note, however, that even a
syntactically correct model can be invalid semantically!) This section gives a brief overview of common
editor operations, such as changing editing modes, creating and destroying models, placing parts, etc.

4.8.1. Editing Modes

The graphical editor has six editing modes — Normal, Add Connection, Delete Connection, Set M ode,
Zoom Mode and Visualization. The Editing M odebar, located (by default) just to the left of the main
editing window, is used to change between these modes.

25

GME Manua and User Guide

Figure 11. GME Editing Mode Bar

& FEw glr|

The figure above indicates the buttons used to select different editing modes. The Editing M odebar isa
dockable Windows menu button bar. It can be dragged to different positions in the editor, floated on top
of the editing window, or docked to the side of the editor.

4.8.1.1. Normal Mode

Normal mode is used to add/delete/move/copy parts within editing windows. Models (from the M odel
Browser) and parts (from the Part Browser) may be copied by left- click-dragging the objects into the
Editor window. Standard Windows keyboard shortcuts ([Ctrl-C] to Copy, [Ctrl-V] to Paste) may also be
used. A copy operation (the default when dragging from the Part Browser) isindicated by the small “+”
symbol attached to the mouse cursor during the left-click-drag operation.

Parts and models may be moved and/or copied between models, too. Here, the normal Ieft-click-dragging
operation causes amove operation instead of acopy. To copy parts and models between or within models,
hold down the [Ctrl] key before dropping.

New parts and models are given a default name (defined in the modeling paradigm). Right-clicking a part
(even connection) brings up a context menu. Choose Propertiesto edit/view an object's properties. Choose
Attributesto edit its paradigm-specific attribute values.

Asmentioned earlier, reference parts act as pointersto objects, providing areferenceto that part or model.
References are created by holding down [Ctrl-Shift] while dropping partsinto a new model from another
model window or from the Browser . When dragging areference from the Part Browser itisnot necessary
to hold down any keys because the source aready specifies that areferenceis to be created. In this case,
however, anull reference is created since there is no target object specified (similar to using the context
menu to insert areference).

References can be redirected, i.e. the object they refer to can be changed. Simply drop an object on top
of an existing reference, and if the object kind matches, the reference is redirected. Note that the type
hierarchy places restrictions on this operation as well (see later in the Type Inheritance chapter).

Subtypes and instances of models can be created by holding down [Alt-Shift] and [Alt] keys respectively
during the drop operation. Type inheritance is described in a separate chapter.

Parts and models may be removed by left-clicking to highlight them, and either selecting Delete from the
Edit menu, or by pressing the [Delete] key. Note that any connections attached to an object will also be
deleted when that part or model isdeleted. Also remember that parts can only be deleted after all references
to them have already been deleted.

4.8.1.2. Add Connection Mode

This mode allows connections to be made between modeling objects. Connections may exist between
two atomic parts, between two model ports (think of these as connection points on models), or between
an atomic part and a model port. Remember, however, that connections are a paradigm-specific notion
and will only be allowed between objects specified by the paradigm definition file as being allowed to
be connected together.

26

GME Manua and User Guide

Remember that connections are inherently directional in nature. Connections are made by first placing
the editor in the Add Connection M ode, then left-clicking the source object, followed by left-clicking
on the destination object.

It is not necessary to go to this mode to create a connection. Instead, in Edit mode right clicking on the
desired source of a new connection and selecting Connect in the context menu changes the cursor to the
connect cursor. A connection will be made to the object that is left clicked next. (Or by selecting the
Connect command on the destination object aswell.) Note that any other operation, such as mode change,
window change, new object creation, cancels the instant connection operation.

4.8.1.3. Remove Connection Mode

By placing the graphical editor in the Remove Connection Mode, connections between objects can be
removed by simply left-clicking on the connection itself or the source and/or destination parts.

4.8.1.4. Set Mode

Set parts are added to a model just like any other part. However, their members can only be specified
when the editor isin Set Mode. Once the editor is in this mode, right-clicking a set will cause all parts
(even connections) in the model that are not part of the given set to be “grayed out.” Left-clicking object
toggles their membership in the set. As they are added/removed to the set, they regain/lose their color
and appearance.

4.8.1.5. Zoom Mode

The Zoom M ode allows the user the view the models at different levels of magnification. The supported
rangeisbetween 10% and 300%. L eft clicking anywherein amodel window zoomsin, whileright-clicking
zooms out. The zoom level iswindow-specific.

4.8.1.6. Visualization Mode

The Visualization Mode allows single objects and collections of objects (“neighborhoods’ of objects)
to be visualy highlighted with respect to other modeling objects. Thisis useful when examining and/or
discussing complex models.

To enter the Visualization Mode, select the Visualization M ode button on the GME editing mode bar
(see picture above). This will cause all visible parts and connections to become “grayed out.” Next, the
user may click on objects using either the left or right mouse buttons to make them fully visible again.
Left- and right- clicking have different effects, as described below.

L eft-clicking on any part toggles the visibility of the object. For connections, their source and destination
objects are toggled. The user may continue to select parts in this manner, highlighting/hiding more and
more objects. Right-clicking on apart will togglethevisibility of the object and the objects at the ends of its

connections. Note that exactly those connections are highlighted at any one time that connect highlighted
objects.

4.8.1.7. Miscellaneous operations
The following operations are only accessible from the toolbar:

» Togglegrid: At zoom levels 100% or higher agrid can be displayed in the model editor window. GME
objectsaways snap to thisfine grid, whether they arevisible or not, to facilitate alignment of the objects.

 Refresh: Clicking the paintbrush button forces GME to repaint all the windows.

27

GME Manua and User Guide

In the current model Edit window, there is a selected list of objects highlighted by little frames. Using
the Arrow keys on the keyboard, these objects can be moved by one grid cell in the selected direction,
provided that there are no collisions. Note that GME does not allow overlapping objects.

Connections in GME are automatically routed. The user only needs to specify the end points of a
connection and an appropriate route will be automatically generated that will avoid all objects and try to
provide avisually pleasing connection layout.

The built-in context-sensitive help functionality is described in the next section.

4.9. AutoRouter Features

The AutoRouter determines a connection's position between model elements. However, sometimes the
user wishes to specify the position. Connection line customization features fulfill two fundamental needs:

» The auto routed connection lines can be customized: line segments (edges) can be dragged within the
possible limits. At the same time, the logic of the system is still preserved.

» The whole auto routing logic can be turned off for connections individually or completely for a model
(on global level or FCO model level). You are allowed to freely edit the whole connection.

The techniques can be also mixed, so some of the connection lines can be maintained by the auto router
logic system, while the others can be completely free fromit.

4.9.1. Autorouting policy

The user can specify if certain connections should be routed automatically or manually on three possible
levels (thisis also the order of priority):

* For connections individually
At the parent model level
* GME's global options
4.9.1.1. GME's default routing policy

If a connection doesn't have a setting on the connection or parent level, GME's default routing policy
determines how the connection should be treated. With model level and global settings, it possibleto fully
customize every connection in a model (fulfilling the second need). You can turn off the default auto
routing in the “Tools | Options...” menu “Autorouter” group's first checkbox (see Figure 12, “GME
AutoRouting default”). Just as other settingsin this dialog, this setting is stored in the Windows registry,
anditisvalidfor the current installation of GME and the current user. If the model istransferred to another
machine, the same settings should be applied to the other GME.

28

GME Manua and User Guide

Figure 12. GME AutoRouting default

. -
\GHEproperies [x]
User lcon Path
Add..

System lson Path
$PARADIGMD IRYicons:$PROJECTDIRVicons Add..

tultline Attributes
[Enable External Text Editor

Autosave
[JEnable Autosave Save every seconds

Autorouter

[] Connectiors keep clear of labels Use auta routing by default

Conn. customize harz.Avert. edge snap treshold angle[deal: 4.000000

Scrpting

Current script engine: HML
WBScript
WEBScript. Encode
Python.&xScript. 2
JScipt
JScipt Encode
PerlSciipt
"SignedlavaScript”

Mise:
Default zoom value; 100% Undo queue size: 10

Double attribute farmat: | %.12g Navigation History
[] Open madel in multiple wiews [[] Enable Event Logging
[] Mouse Over Object Motify [[] Consale Timestamping

Edge Smooth made: | High Quality Mode

Font Smooth mode: | Anti Alias

ok [Cancel |

By default, the auto routing is turned off and the model and connection entities don't contain any directive
about auto routing, so everything should work exactly the same way as with the older GME versions.
Y ou can exclude certain connections from the auto-routing with the use of the Attribute Browser or the
context menu. In this case a registry value is added to the connection entity node, and the auto routing
logic no longer will take care of the connection.

If somebody turns off the default auto routing policy, and the model doesn't contain specific policies for
connections, all of the routes will be fully customizable. Turning off the autorouting settings on GME's
global level or model level indicate an automatic conversion routine, which takes the auto routed points
and loads these cal culated points as custom points into connection's customization data. As aresult, after
the conversion you won't just have a simple line which connects the start point and the end point, but the
customization operation can be started from a state where a similar topology to the autorouted scheme
is present.

4.9.1.2. Switching routing policy on per connection basis

The user can exclude certain connections from the auto-routing by setting the “1s auto routed” property in
the Attribute Browser'sPreferencespagetof al se. Inthiscasetheauto routing logic no longer will take
care of the connection; it won't see this connection at all. Similarly, if thevaluet r ue is set, the particular
connection will join the auto-routing scheme again. Switching back and forth between the settings will
preserve the customization data for both types of routings. Hitting Ctrl+D clears the preferences settings.

29

GME Manua and User Guide

Figure 13. Connection AutoRouting settings

Atributes | Preferences | Properties

E Connection Preferences

[=l

If the user turns off the default auto routing policy, and the model doesn't contain specific policies for
connections, al of the routes will be fully customizable. If there isn't any stored customization data, the
previously mentioned conversion routine will store the auto routed path points as the manual connection
path points.

4.9.1.3. Switching routing policy on per model basis

On the modédl's Preferences page in Attribute Browser, you can find a setting similar to individual
connections, but it is under the Auto Router Preferences group in that case.

Figure 14. Model AutoRouting settings

Attributes | Preferences | Properties

:| Auto Router Preferences

E Miscellaneous Preferences

Thisisthe highest precedence level preference, so it overrides the per model basis settings and the global
GME settings.

4.9.1.4. Auto routed connection

The customization information (which specifies or modifies a certain topology) remains valid until the
number of edges that make up the connection line changes, or if a box collision situation emerges as a
result of the customization. In these cases, the customization data will be ignored, but not deleted.

4.9.2. Editing a Connection

If you hover over a selected auto-routed connection, the cursor will turn to avertical or horizontal arrow.
With adrag and drop operation, you can adjust the vertical position of a horizontal edge or the horizontal
position of a vertical edge. If you hover over a joint of an auto-routed connection, you can initiate a
customization operation where both edges which are adjacent to the particular point will be moved.

If a connection line is selected, the edges that have customization information will appear with a dash-
dot-dot pattern.

Figure 15. Customized edge with dash-dot-dot pattern

- T

30

GME Manua and User Guide

In the context menu, there's also the possibility to delete the customization for just agiven edge, or delete
all customization of the connection for the actual aspect. Also you can delete all customization datafor all
aspect for the particular connection using the proper context menu point.

Figure 16. Context menu with optionsto delete customization

PR |

Properties
Preferences
Reqgistry

i Source AukoRouting »
[estination AutoRouting 3

Delete
Help

Jump ko Source
Jump to Destination

Convert auto routed path ta custam path

Delete this edge's customization

| Delete customizations For this connection |

4.9.3. Fully customizable connection modifications

The skew connection edges totally get out of control of the auto router algorithm. The vertica and
horizontal edges of the path are still taken into account during the auto routing algorithm, so they won't
collide with auto routed lines. There's no box avoidancelogic; it istotally up to you how you want to route
the connection line. The only logic which still applies determines the start and the end point according to
the box's router direction preferences.

4.9.3.1. Editing fully customizable connections

Y ou can click on apoint anywhere on an edge on a connection, and with adrag and drop technique a new
point can be added to the route.

Figure 17. Creating a skew connection

-
”' ClassB

r -
; -
L

+- ClassD

You can repeat this as many times as required and add other points. Removing points can be done with
context menu (right clicking on the desired point) or by simply moving the point in-line with the adjacent
points. If you move the point in-line with the adjacent points, the point will be automatically removed
from the route.

Besides automatic point deletion, There's also a logic which does horizontal and vertical alignment of
connection edge. Thismeansthat if anewly added point createsanearly vertical or nearly horizontal edge,
GME will automatically adjust those to be totally vertical/horizontal. The align a gorithm can be disabled
by holding down the Ctrl (Control) button during the point addition drag and drop process. Also you can
run this alignment algorithm along the whole connection using the "Try to apply horizontal/vertical
snap along the whole connection" context menu item.

Y ou can tune the most important parameter of the logic (the snap treshold angle) int the Tools Options
diaog. You should give the angle in degrees (and not in radian). See the previous screenshot of the dialog
in this section.

31

GME Manua and User Guide

Figure 18. Connection customization horizontal/vertical edge snap threshold value
settings

r -
| I IApTOPETHIES) ﬂ
User lcon Path

Add...

Sypstern leon Path
$PARADIGMDIRYicans $PROJE CTDIRNicons add..

tuliline Attributes
[[]Enable External Text Editor

Autosare
[] Enable Autosave Save every seconds

Autorouter
[] Connections keep clear of labels Use auto routing by default

|Eonn. customize harz. fvert, edge snap treshald angle[degl 4.000000
Serpting
Current script engine: L
WBScript

YBScrpt Encade
Python &xScript. 2
JScript

JScript Encode

PerlSecript I
"Sigred)avaSeript’
Misc
Default 200m value: 100% Undao queue size: 10
Double attribute fomat: | %.12g Navigation History
[[] Open model in multiple views [C]Enable Event Logging
[touse Over Object Motify [[] Console Timestamping

Edge Smooth mode: | High Quality Mode

Font Smooth mode: | Anti Alias

Ok ‘ [Cancel]

GME triesto obtain the data of an auto-routed connection path and feed that edge information into thefully
customizable path's data. That work is done by a special algorithm: it converts the route determined by the
auto-router logic into aseries of fully customizable connection points. Thisway you can start to customize
an existing line and do not have to build up one from scratch. This algorithm runs before you change the
auto routing state of the GME application, on a whole model or an individual connection. Note that this
algorithm needs to run the auto-routing algorithm on the whole model to be able to obtain the needed
information, so it might make opening or refreshing of a model view slower. For example if you modify
the auto-routing state of a sub-model and you open that sub-model in aview much later, the conversion
algorithm will run only at the time (during the view opening procedure).

The start and the end points of the connections are special: they are still determined by the auto-routing
logic. Thisis partly because connection path ending in a port wouldn't be movable anyway because the
location of the port cannot be changed inside the model box (the port position is automatically computed
and fixed).

4.10. Emergency saves and GME CrashDumps

GME is able to generate a CrashDump in the event of a GME crash. A CrashDump file (a Microsoft
MiniDump crash report file with additional custom information stream) contains a collection of
informationrelated to the particular crash. With the help of thisfile, devel opershaveinformation to analyze
the crash and discover the bug more easily. The file has a dmp extension and named after the precise
date and time (GMT) of the crash event and the process Id and thread Id of GME. This should result
in aunique name of the form: "GME_CrashDump-yyyy-mm-dd_(hh-mm-ss) pid _tid.dmp", for example:
"GME_CrashDump-2009-10-01_(16-09-56) 3180 4828.dmp".

32

GME Manua and User Guide

In case of a crash event GME first presents a dialog about the crashdump. After that another dialog is
presented about the project emergency save.

Because parts of memory can contain classified information, there's a choice to not generate the
CrashDump. This security reason is the only one why we don't automatically save a report and collect
them on acentral server at I1SIS. If thereport is generated, it will reside on the user's machine and it's up to
the user to send it to the developers. It can be found "%OSDir%\Documents and Settings\%UserName%o
\Application Data\GME\" folder on Windows X P or "%OSDir%\Users\%UserName%\A ppData\Roaming
\GME\" folder on Windows Vista or Windows 7. Please open the folder and attach the file to the e-mail
to the mentioned e-mail address (see next paragraph or the crashdump dialog).

Figure 19. Crashdump dialog
|' GHE

'j GME encountered an error! Do you want to generate a crash dump file?

GME is able to generate a crash dump {Micrasaft MiniDump) repart file about this particular crash issue. Developers can use this file to analyze the
crash, so it can sigrificantly improve the quality of the program. The crash dump contains cal stack, CPU register dump, and other crash related
information, Please click the checkbox below if you are willing to generate the crash dump, You can find the crashdump file in the
"f05Dirk\Documents and Settings)veUserklames:) Application DatalGME" Folder on Windaws =P or
"HeSDirhiUserst #hUser Mame %l AppDataiRoamingGME” Folder on Windows Vista or Windows 7. You can send the recent crash dump(s) ko the
following e-mail address: gme-supp@isis, vanderbilt edu

If your security policy alows sending such information to the devel opers, please select "Yes' to generate
the crashdump, then send it to gme-supp@isis.vanderbilt.edu as afile attachment. If you have any trouble
handling crashdumps, you can also send e-mail to the gme-users mailing list, and the developerswill help
youl.

There are two types of Emergency save dialogs:
* Figure 20. Emergency save dialog when a single-user project isopen

| GME (%]

1 *four current work has been saved ko MEA=C Y GME_stuffitutorials\compaanynetworks-emergencyl, mga.
- The ariginal project file has not been madified. We apalagize for the inconwvenience.

* Figure 21. Emergency save dialog when a multi-user project isopen

| GME [X]

L Your cutrent work can be found in the local checkout directary,
ey

Note, that if there isn't any open project at the time of the crash, then no additional dialog is displayed
after the crashdump dialog.

4.11. Help System

GME provides context-sensitive, user-defined help functionality. This is facilitated by the “Help URL”
preference of objects. This preference is inherited from the paradigm definition and through the type
inheritance hierarchy exactly like any other object preference. For more information on this inheritance,
see the separate chapter on type inheritance.

When the user selects help on a context menu or the Help menu item for the current model (also the [F1]
key), GME looks up the most specific help URL available for the given object. If no help URL isfound,
the program defaults to the appropriate section of the User's Manual |ocated on the 1SIS web server.

33

GME Manua and User Guide

When the appropriate URL islocated, GME invokes the default web browser on the current machine and
displays the contents of the URL. If no network connection is available, the help system will be unable
to display the information unless the web server is running on the current machine or the URL refers to
alocdl file.

4.12. Searching Objects

4.12.1.

Search in GME is implemented as a dockable window. Now you can dock the search window wherever
you like. The Sear ch window can be opened by executing the Edit | Find command, using the [CTRL-F]
shortcut, or clicking the binocular icon in the toolbar. The search window is tabbed along side console.

Figure 22. GME Search Window

Search Criteria Search Criteria Search For Search Optiohs Search In
Mame: 5 @and Name: Model Aborn Case Sensitive (%) Entire Scope

Reference [7] Set [IMatch Wwhole Word Only () Current and its Child

[1 5earch within results

Fole Name:
Kind M arne:

o]} Fole Name:

Kind Name:
O ¥ar

v
v
w
v

S (B [R5

Atribute; Pricrity >=100 Altributer
Search Results Previous Searches

Object Path Type WYalue #- Name="5", Attibute=""Priority >=100" ~
DBSetupd sh-dema : System : DESetupd MODEL | Atibute="T est Attr=kiP=100"
DESetups sh-dema : System : DESetuph MODEL =5 Attribute="Test Attr=k
DESetupl sf-dema : System : DBSetupl MODEL "

DESetup3 sf-dema : System : DBSetup3 MODEL

GUISetupl sf-dema : System : GUISetupl MODEL

DBSetup2 sf-dema : System : DBSetup2 MODEL v
Splitter sf-dema : System : TwoChannels - Splitter MODEL

Console | Search

Search Criteria

The search in GME has two search criteria. Each search criteria takes Name, Role Name, Kind Name and
Attribute. Each of these inputs is treated as a regular expression. An object must match all of the inputs
to be considered a match. For example, if you specify both Name and Role Name in first search criteria,
then both of them must match for a given object to be included in the search result. The purpose of each
input isas follows:

Name used to specify the name of the object. The Search checks for any names that match the
pattern specified by thisfield

Role Name used to specify the role name of the object. The Search checks for any role names that
match the pattern specified by thisfield.

Kind Name used to specify the kind name of the object. The Search checks for any kind names that
match the pattern specified by thisfield.

Attribute used to specify an attribute appearing in the object. Thisfield can take complicated logical
expressions as input. An attribute has a value associated with it. You can search for
attributes with a specific value or a value satisfying an expression.

Supported operators in attribute expression:
* Logica Operators: & (AND), | (OR)
o Comparison Operators. =, >, <, >=, <=, =

Attribute expressions can be combined with logical expressions. For example, let's say
you want to search aperson object withage > 18 and height less than 6 feet. Then you
can have an attribute expression likethis: age > 18 & hei ght < 6. Thiswill find al

GME Manua and User Guide

4.12.2.

4.12.3.

objects which have attribute called age and height, and then compare the values of those
attributes. In this case it checksiif the age is greater than 18 and height is less than 6.

Note

>, <, >= and <= are not valid for string attribute types.
The two search criteria are combined with logical operators. The operators are given below:
And Matching objects must satisfy both the search criteria.
Or Matching objects must satisfy at least one of the search criteria

Xor Matching objects must satisfy exactly one of the search criteria.

Regular Expressions

The Name, Role, Kind and Attribute fields can be specified using the regular expressions. This section
documents the valid input kinds that the Search tool shall accept.

Note

Regular expressions are case-sensitive.

Note

Check the Match Whole Word Only if you don't want a Regular Expression based search for the
first four fields.

Syntax of the expressions:

* Any permutation of characters, numbers & symbols such as® ", “-” isvalid. A few special symbols
thm are um are “ .11 , g , “+11 , “ (17 , “)” , l([H , KI]H , waAn , (($H .

» Theregular expression should be well formed, i.e. al the opening brackets should have corresponding
closing brackets.

» Writing “GME” will mean all the string containing the letters “GME” will be returned.
* Writing “GME*” will return all strings containing “GM”, “GME”, “GMEE", “GMEEE" and so on.
» Writing “GME+” isthe same as“GME*" except it doesn't match “GM”.

* Writing “GME.*” isthe same as“GME”".

Note

For more information on regular expressions, see http://www.regular-expressions.info [http://
www.regular-expressions.info/].

Search Scope

Search can have one of two scopes indicated by Search In Option. Entire Scope is the default selection
which means al the model hierarchy is searched starting from the root folder. Selection of Current
and Child requires that some model or folder be selected in the GME Browser. This option will search

35

http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://www.regular-expressions.info/

GME Manua and User Guide

4.12.4.

4.12.5.

4.12.6.

4.12.7.

the model hierarchy starting from the selected elements. That means only its child elements and their
descendants will be searched.

The scope of the search can also be limited to the current search results. In this case only the elementsin
the current search results are searched. This can be useful when you want to filter out some of the results
from current search result. This option is enabled by checking the Sear ch within results option.

Object Types

GME hasdifferent object types. Thetypesof object to be searched can be designated in Sear ch For options
group. You can restrict your search to a Model, Atom, Set, Reference, Connection or a combination of
them. Also included is a specia type of search for NULL references or references to a particular object.
When you check the Special checkbox, other checkboxes in the group will be disabled. When you hit
search, it will start looking for NULL references in the given scope satisfying the given criteria. Clicking
ontheobject intheresult list will set it asthe new object whose references are to be searched for. After you
click an object in the results and do Special Search, the particular object's references will be looked for.

Case Sensitivity and Whole Word Matching

Search can be made case sensitive by checking Case Sensitive check box in Search Options. If whole
word matching is desired Match Whole Word Only can also be checked.

Search Results

The search results will be displayed in the list box beneath the search criteria. The result will show the
object's name along with its type and path. You can double click on a specific object to view it in the
Model Editor.

Search History

Whenever you search for something, it's likely that you may need to search for the same thing again after
some time. Y our searches are kept in the Previous Searches tree control. Y ou can double click the entry
in the tree control to bring it back to the search criteriainput boxes. The search history will aso be saved
in the registry to preserve your searches across GME sessions. Also, the input combo box controlsin the
search criteriawill contain the search history of that field.

4.13. Scripting in GME

Inthe bottom part of the console window the user can typein her instructions/programs. The user-preferred
scripting language can be set in the T ool s | Settings menu. The default scripting engineis JScript, however
in this document Python script samples will be used (Python.AX Script.2).

Figure 23. Script Engine selection

Scripling
Current script engine: | »hL
VB Script
VB Sciipt Encode
JScript
JScript Encade
“Signed]avaScript”
“SignedyBS cript”

The scripting feature enablesthe user to automate several operationsinthe GME world. These may include
GUI related operations (i.e. Export XML), MGA related model inquires, or modifications operating on
the currently opened model.

36

GME Manua and User Guide

Figure 24. HelloWorld in GME

gne . Consolelessage("Hello World". 1)
@ Hello World

Q Igme.CunsuIeMessage["Hellu World", 1] ﬁﬂ

Beside the features provided by the selected scripting language (built-in methods, variables or packages)
three GM E-specific objects are available in the GME scripting environment: grre, pr oj ect andi t.

Thefirst object gne, represents the running GM E application instance and implementsthe | GVEOLEApp
interface as defined in the Gre. i dI file. This interface allows the user to access various user interface
elements of the modeling environment i.e. panels like Act i veBr owser and Cbj ect Br owser , or to
execute project related commands like: invoking an interpreter on the currently opened model (if any).

hiding the ActiveBrowser w ndow
gne. panel s[0] . Visible = 0

check the constraints
gne. CheckAl | Constraints()

invoking an interpreter
gnme. RunConponent (' Mya. I nt er pret er. Conponent C)

Thelifetime of the gme object isthe same asthat of the application. Thepr oj ect variableisvalidwhilea
project is opened in the main application window. Thisvariable implementsthel MyaPr oj ect interface
definedin Mga. i dl . For accessing the inner elementsinside an MGA project transactions must be used.

gme. OpenProj ect (' MGA=f : \\ sf-sanpl e. nga')

terr = project.CreateTerritory(None, None, None)
proj ect. Begi nTransaction(terr)

nf = project. Root Fol der. Chi | dObj ect (* Mai nFol der’)
nf.Nane = ‘ mai n_f ol der’

nf. Chi | dFCO(* Mai nConpound’). Nane = ‘ mai n_conpound’
proj ect. Conmi t Transacti on()

gme. Cl oseProject(1)

In the code snipped above a sample SF model is opened, the Folder named Mai nFol der, and the
Compound named Mai nConpound are renamed. Operations accessing the objects inside a project are
enclosed in a transaction. In case the transaction commit fails Abor t Tr ansact i on must be used.
Beware that during a user-initiated transaction, another transaction should not be started. This means that
during scripting, if a transaction has begun, user interface operations (like selection of an object in the
View or ActiveBrowser with the mouse pointer) must be suspended by the user until the transaction is
committed or aborted.

The it variable represents the currently active model window. It is accessible only while a project
is opened, and at least one model window is opened. Should the active model window be closed, the
variable will automatically refer to the newly selected active window, if any. Thei t object implements
the | GVECOLEI t interface (defined in Gre. i dl). The main benefit of using this object is the ease of
use of MGA related operations on a higher level than that offered by the | MpaObj ect , | MgaFCOand
| MgaFol der interfaces (see Mya. i dl), and it allows the user to automate some repetitive tasks.

Themethodsi t provides require either object names, or | MyaFCO pointers asincoming parameters, the
latter method names being suffixed with “FCO”. The code sample below shows duplicating (clone) of
objects:

clones object (if any) nanmed “InSignal”, renames the clone to
“Cl onedl nSignal” and returns it

37

GME Manua and User Guide

clonedl nSignal Ptr = it.Duplicate(“InSignal”, “C onedlnSignal”)

cloning cl onedl nSignal object 4 times, with different nanes
for i in range(5): it.DuplicateFCQO(clonedlnSignalPtr,
“twi ced onedl nSignal” + str(i))

cl oning “tw ceC onedl nSi gnal 2" object, using the it.Child() method
it.DuplicateFCQ it.Child(“tw ceC onedl nSignal 2"),
“thriced onedl nSi gnal ")

Some other MGA related operations the user may use are: Cr eat e, Ref er, | ncl ude, Connect,
Connect ThruPort, Set Attri but e, SubType, I nstanti at e as well as their FCO suffixed
counterparts.

The name based Duplicate method requires that “1 nSi gnal ” must be present in the active model, the
pointer based Dupl i cat eFCO method does not enforce this, allowing the clonable object to be in a
different model in the same project. Exception to thisruleis| ncl udeFCO requiring that the set object
and its to-be-member must be in the same model.

All these operations(i.e. Dupl i cat e, | ncl udeFCO, Connect etc.) use methodsdefinedin| MgaFCO
or| MgjaModel interfaces, that requireto be executed insidetransactions. That iswhy if no user transaction
was active, the method does the duplication or connecting task between Begi nTr ansact i on and
Commi t Transacti on cals. If the user initiates this command from a transaction, it is detected
and another transaction is not started, and when the method exits the transaction remains open.
However, to help users manage transactions, and let them avoid tedious typing (creating territories,
passing them to over to Begi nTr ansact i on, etc.) simple parameterless Begi nTr ansact i on and
Conmi t Tr ansact i on methods of thei t object are provided.

Connect and Connect FCO methods are used to connect object in one model. Two objects have to be
specified (by their name or the pointers) and the connection role may be given optionaly. If an empty
string is given as connection role, then the object are connected if one possible connection role exists
between the source and destination.

Connect Thr uPort method is provided to establish connections between ports, referenceports. The
connection role again can be left empty. The source and destination are identified by specifying two roles
for each. Thefirst oneisthe name of the container, the second is the name of the port. The container might
beamodel or areference. If one port isinvolved in the intended connection, for example only at the source
side, the destination must be specified by leaving the second role parameter empty.

Using ShowCO method the user can jump to another model, making that the new active model, using a
path syntax similar to that used on Unix (slashes as delimiters, ‘..’ to step one model up in the hierarchy).
The path used must identify uniquely an fco, otherwise the command will not succeed.

The Pr ev and Next methods can be used to cycle through the already opened models.
PresAspect and Next Aspect cyclethrough the aspects of the current model.

Now console has the ability to load HTML content into the console window if a htm/html extension file
is selected with the 'Load Script' dialog. This action won't affect the recent script list, because the HTMI
content is not a script.

38

GME Manua and User Guide

5. Type Inheritance

Thetype inheritance conceptsin GME closely resemble those of object-oriented programming languages.
The only significant difference isthat in GME, model types are similar in appearance to model instances,
they too are graphical, have attributes and contain parts. By default, amodel created from scratchisatype.
A subtype of a model type can be created by dragging the type and dropping it while pressing the [Alt
+Shift] key combination. Aninstanceis created in similar manner, but only the [Alt] key needsto be used.

A subtype or an instance of amodel type depends on thetype. Thereis one significant rule that is different
for subtypes and instances. New parts are allowed in a subtype, but not in an instance. Otherwise, parts
can be renamed, set membership can be changed, and references can be redirected in both subtypes and
instances. Parts cannot be deleted and connections cannot be modified in either subtypes or instances.

Any modification of parts in a type propagates down the inheritance hierarchy. For example, if a part
is deleted in a type, the same part will be automatically deleted in all of its instances and subtypes and
instances of subtypes all the way down the inheritance hierarchy.

Typescan contain other typesaswell asinstances as parts. The mixture of aggregation and typeinheritance
introduces another kind of relationship between objects. Thisisbest illustrated through an example. In the
figure below, there are two root type models: the Engine and the Car. The car contains an instance of an
engine, V6, and an ABS type model. V6 is an instance of the Engine; this relationship isindicated by the
dash line. Aggregation is depicted by solid lines.

Figure 25. Model Dependency Chains

T T
Engine Car -
S I

|ST I
— |CoolCar| = | MyCar

T Type

ST SubType

I Instance

-—— Composition
Dependency

II
ABSI

When we create a subtype of the Car (Cool Car above), weindirectly create another instance of the Engine
(V6) and a subtype of the ABS type. Thisisthe expected behavior as a subtype without any modification
should look exactly like its base type. Notice the arrow that points from V6 in Cool Car to V6 in Car.
Both of these are instances, but there is a dependency between the two objects. If we modify V6 in Car,
V6 in Cool Car should also be modified automatically for the same reason: if we don't modify Cool Car
it should always look like Car itself. The same logic appliesif we create an instance of Cool Car (My Car
above). It introduces a dependency (among others) between V6 in My Car and V6 in Cool Car. Asthe
figure shows, this forms a dependency chain from V6 in My Car through V6 in Cool car and V6 in Car
all the way to the Engine type model.

What happens if we modify V6 in Cool Car by changing an attribute? Should an attribute change in V6
in Car propagate down to V6 in Cool Car and below? No, that attribute has been overridden and the

39

GME Manua and User Guide

dependency chain broken with respect to that attribute. However, if the sasme attributeischanged in V6 in
Cooal Car, that should propagate down to V6 in My Car unless it has already been overridden there. The
same logic applies to preferences.

The figure below shows the same set of models, but only from the pure type inheritance perspective.

Figure 26. Type Inheritance Hierarchy

T T
Engine Car

I 1] 1| 1| T
V6 V6 V6 V6 A Car
T I
ABS My Car
s \ -—— InstanceOf
ST i SubTypeOf
ABSX ABSi

Let's summarize the rules of type inheritance in GME.

* Parts cannot be deleted in subtypes or instances.

* Parts can be added in subtypes only.

 Part changesin atype model propagate down the type inheritance hierarchy unconditionally.
» Aggregation and type inheritance introduce dependency chains between models.

« Attribute and preference changes, set membership modification and reference redirection propagate
down the dependency chain. If a particular setting has been overridden in a certain model in the
dependency chain, that breaks the chain for that setting. Changes up in the chain do not propagate to
the given model or below.

e Therules for reference redirection are as follows. A null reference in a type can be redirected in any
way that the paradigm allows down the dependency chain. A reference to atype in a type model can
only be redirected to subtypes or instances of the referred-to type or any instances of any its subtypes. A
referenceto an instance model in atype model cannot beredirected at all down the hierarchy. Obviously,
areference in an archetype can be redirected in any way the paradigm allows.

» To avoid multiple dependency chains between any two objects, in version 1.1 or older, only root type
models could be explicitly derived or instantiated. This restriction has been relaxed. Now, if none of a
type model's descendants and ascendants are derived or instantiated, then the model can be derived or
instantiated. This means, for example, that amodel, that has nor subtypes or instances itself, can contain
amodel type AND its instances. This relaxed restriction still does not introduce multiple dependency
chains.

40

GME Manua and User Guide

5.1. Attributes and Preferences

The Attributes and the Pr efer ences tabs each show the items either in gray color or in black color. Items
with gray color have the default or inherited value, which means that the value is not given explicitly for
this object. If the user assigns a new value to an attribute or preference, the item will be show in black
color. An item can be reset to the inherited value by pressing [Ctrl-D] while the item is active.

5.1.1. References and Sets

As mentioned before, references can be redirected (with some restrictions) and set membership can be
changed in subtypes and instances. The propagation of settings aong the dependency chain is true here
too. Changing the settings breaks the dependency chain for the given object. However, the setting can be
easily reset by selecting the Reset item in the appropriate context menu.

5.1.2. Decorator Enhancements

The default decorator is able to display moreinformation about objects regarding the type inheritance. The
user may turn off or on these information in meta-modeling time or modeling time, too.

* Onmodels, "T","S" or "I" is displayed according to the object type information.
 For instances below the name of the object, the name of the type or subtype is shown with small font.

» The new decorators use vectorial graphics for shapes like: inheritance (triangle), same relationship
(diamond), connection bullets, constraint signs, boxes).

Vectoria shapes and (certain) boxes can have shadows, gradient fills, rounded corners. All of these
properties can be defined in meta-models and can be adjusted in the Attribute Browser.

* In-place editing of labels and other text elements, like UML class attributes or meta object attributes.

41

GME Manua and User Guide

6. Libraries

GME supportsmodel libraries, animportant mechanism for reusing design artifacts. Librariesare ordinary
GME projects; indeed every GME project (including the ones that import libraries themselves) can be
imported in a project as alibrary. The only prerequisite is that both the library and the target project are
based on the same version of the same paradigm.

When a library is imported, it is copied into the target project as a whole, so that the root folder of the
library becomes an ordinary (non-root folder) in the target. The copy isindicated with a special flag that
dictates read-only access to this part of the target project.

The primary way of using libraries is to create subtypes and instances from the library objects. It is
also possible to refer to library objects through references. Apart from being read-only, objects imported
through the library are equivalent to objects created from scratch.

Library objects can easily be recognized in the tree browser. The library root is indicated with a special
icon, and if the browser displays accessicons, al library objects are marked to indicate read-only access.

Toimport alibrary in aproject, use the Attach library... command of the M odel Browser context menu.
Itispossibleto attach librariesto folders only. Thefolder that receivesthe library must be alegal container
in the root folder according to the paradigm. Since many paradigms do not alow the root folder to be
instantiated at other pointsin the model tree, the root folder of any project is exempt from thisrule, i.e. it
is possible to attach alibrary to the root folder even if the paradigm does not allow that.

If the original library project changes, it is not automatically reflected in the projects that import it. It is
possible, however, to refresh the imported library images through the Refresh library... function in the
browser context menu. It is possible to specify an alternate name for the library, in case it has been moved,
for example.

6.1. Library Refresh

To support a successful refresh, a GME model has GUIDs: unique ids that are assigned to each FCO and
Folder. This enables the correct and unambiguous restoration of relationships upon a Refresh Library
operation.

Generally speaking, arefresh operation consists of restoring every relation which crosses the host project
—library border. These relationships are as follows:

 areferencein the host project pointing to alibrary element

» aconnection in the host project, which is connected to a referenceport that references alibrary model's
port (references to library models with ports have references to the ports, known as referenceports)

* library-derived subtypes in the host project

When alibrary isrefreshed, the binary representation isloaded from thelibrary's. nga file and the border-
crossing relationships are redirected from the old library to the new one. Note that because libraries are
read only, there are no relationships pointing from the library to the host project. This redirection process
takes place in the following order:

* base-derived relationships are loosened to enable easier update later (step 0),
« referencesto old library elements are redirected to the corresponding new library element (step 1),

 connections involving referenceports are reconnected to the corresponding new library referenceport
(step 2),

42

GME Manua and User Guide

» model subtypes are synchronized (step 3), for example, the basetype in the library might have been
enriched to contain new elementswhich need to be propagated down into the subtypesin the host project

(step 3),
 gpecial model children (connections) are synchronized (step 4),
* dtrict base-derived relationships are restored (step 5).

After every relationship isrestored, the old library isunloaded from the host project. Log messages provide
feedback in case of a failure. Since libraries are read-only, no nested library can be refreshed in a host
project. In such a case, the user needs to go down to the very bottom of the cascading libraries (i.e. open
them in GME), and refresh them in their containing project, then do an upward step-by-step refresh.

Note

The refresh feature creates a new version of the library regardless of whether or not the library
was altered.

Note

It isrecommended to carefully check the models after arefresh operation, especialy if non-trivial
changes were applied to the library.

6.1.1. Data file compatibility issues

The downside of modifying the internal representation of elements (assigning uniqueids) isthat backward
compatibility was broken in case of XML files. A model created with anew version of GME and exported
asa. xne filewill not be read by older GME releases. The forward compatibility in case of . xne filesis
trivial; unique ids are assigned on the fly when importing files created with old versions of GME. Binary
forward compatibility (. nrga files) is also made possible with an on the fly assignment of unique ids upon
the OpenProj ect operation.

6.2. Libraries and Metamodeling

Metamodel s can be composed easily using the library feature. If ametamodel er attachesalibrary to a host
metamodel, then the metainterpreter will create a composite paradigm, which corresponds to the union of
the two metamodels. The host metamodel (without the library) might define a paradigm, and the library
itself might define another paradigm that is why we can call these sub-metamodels which define sub-
paradigms. With certain restrictions (e.g. no equivalence operator is used to unite two elements from two
sub-metamodels) it can be said that any model valid in one of the sub-paradigmsis a valid model in the
composite paradigm as well. This means that it is possible to import a sub-paradigm model (in . xmre
format) into an opened composite paradigm model.

Furthermore, a model in the composite paradigm is able to host sub-paradigm models as libraries,
by performing an on-the-fly conversion of the sub-paradigm model to the composite paradigm while
attaching as a library. Components (e.g. interpreters) written for a sub-paradigm can aso be reused for
the composite paradigm, provided the user registers the component for the composite paradigm aswell: a
commadelimited list of paradigm namesmust be providedinthe Conponent Conf i g. hfile(#def i ne
PARADI GVES definition).

Metamodel compositionisanicefeatureif we obey certain restrictions. One of them isthe af orementioned
restriction on equivalence operators. The second one is that we can't have conflicting names in the sub-
languages, because of the unique name requirement of the composite metamodel. To allow composition
in such cases, namespaces were introduced in the MetaGME environment, namely the Metal nterpreter

43

GME Manua and User Guide

is capable of sorting elements into namespaces based on which part of the metamodel they reside in:
objects defined in alibrary will be defined in the library namespace (if specified), and objects defined in
the host metamodel will be assigned the main namespace (if specified). More specifically, the namespace
definitions are assigned to rootfolders (since libraries appear in a project as an element of type rootfolder).
Every element contained by that rootfolder is defined in that namespace. The namespace assignment can
be done through the NamespaceConfig interpreter, which writes the specified values in the rootfolder's
registry. If an empty string is specified then no namespaceis assigned to elements, otherwise, aname of the
‘nanmespace: : ki ndnanme’ form will be assigned. In case of nested libraries namespace modification
is not possible; such values will be shown grayed out by the NamespaceConfig interpreter.

After setting the needed namespaces, the user might invoke the metainterpreter to create a composed
paradigm, which will have no conflicting names. During modeling in this composed paradigm, the
kindnames of the objects will contain the namespace information as a prefix of the real kind name, so that
objects in the PartBrowser will be displayed with their fully qualified name.

Regarding the features which we mentioned in case of composed metamodels, there are some workarounds
asfollows:

6.2.1. Importing a sub-paradigm model into a composed paradigm

model

In case the sub-metamodel is metainterpreted on its own with an assigned namespace (i.e. the same
namespace is set as in the case when is used as a library) then every model built with this paradigm is
trivially importabl e/attachabl e to a composed paradigm model.

In case the sub-metamodel is either not assigned a namespace or used with a different namespace,
kindname matching requires some user interaction: the MgaResolver component pops up a dialog where
the user can specify how kindnames need to be altered to be valid element names in the target (composed
paradigm). Users can select from name truncation, prefixing or migrating. The prefixing option will prefix
every kindname parsed during the import process with the specific string, thus it is suitable for doing a
simple transformation such as: every element without a namespace will be regarded as being in a certain
namespace: “MyMbdel ” element transformed to “MyNS: : MyMbdel .” The truncation option does the
opposite, this being suitable for importing composed paradigm models into sub- paradigm models if
the model contains only sub-paradigm elements. Finally, the migration option allows any element from
one namespace to be regarded as being in another namespace: every element prefixed with (found in)
“MyNS: : " namespace will be prefixed with (migrated into) “Your NS: : " namespace.

6.2.2. Re-using a component in a composed paradigm

An existing component (interpreter, add-on) can be re-used in a composed paradigm if slight modification
ismadeto the code, which will not affect the component's behavior. A component might set the namespace
itisinterested in, i.e. the default namespace, withal MyaTerrit ory: : Set Namespace method call.
Raw COM component authorsare probably familiar withl MyaTer ri t or i es andtheir relationshipwith
Transactions and interpreters. BON2 component users need not deal with Territories and Transactions, as
itisenough to call the BON: : Pr oj ect | npl : : set Nmspc() method.

By setting the default namespace as mentioned above, a component can access kind namesin their shorter
form (without the namespace prefix) in case an element is from the default namespace. For elementsin
other namespaces than the default one, the kindname still will be afully qualified one, with the namespace
as aprefix.

Thus, if an interpreter asks for al children with “MyModel ” kind (short form) it will get back only
those MyModel elementswhich are have“<<def aul t Nanespace>>: : MyModel ” kind and will not
be confused with elements of “<<anot her Nanespace>>: : MyModel ” kind. If a default namespace

GME Manua and User Guide

is set and a “<<def aul t Nanespace>>: : MyMbdel " element is queried for its kind it will return
MyModel only;if “<<anot her Nanespace>>: : MyModel " objectisqueried for itskind it will return
“<<anot her Nanespace>>: : MyModel .

Add-ons and decorators require more care than interpreters, because they share a territory, in contrast to
theinterpreters, which own their territory exclusively. Since the namespace an add-on setson the Territory
might be overwritten by the second add-on, it is required to set the preferred namespace on every entry
point into the add-on library. In case of interpreters, it is generally enough to set the namespace at the
I nvokeEx() 'sfirst line. In case of add-ons and decorators, all exposed methods (which can be called
through the COM interface) need to do this.

BON2 components based on BonExtender generated code require one additional modification because
of the specia | MPLEMENT _BONEXTENSI ON macros, which contain global variable definitions
holding kindname strings, which can't be affected by the territory's actual namespace setting, because
their initialization is made when the . dl | is loaded. To find the kindnames these macros refer
to in a composite paradigm environment, developers must #def i ne NAMESPACE_PREF in the
Conponent Conf i g. h file to the string that will be used to prefix the kind name strings used in the
| MPLEMENT _BONEXTENSI ON macros.

6.2.3. Defining constraints in a composed metamodel

If namespaces are defined for the library and the host project, then the constraintsin the host project need
to be written in fully qualified form. However, the constraints defined in libraries may remain untouched
(use terms of the sub-paradigm). The Constraint Manager recognizesthat the types are defined there using
short names, so it will prefix them automatically.

45

GME Manua and User Guide

/. Decorators

GME v1.2 and later implements object drawing in a separate pluggable COM module making domain-
specific visual representation areality.

Replacing the default implementation basically consists of two steps. First we have to create a COM
based component, which implementsthe | MyaEl enment Decor at or COM interface. Second, we have
to assign this decorator to the classes in our metamodel (or for the objects in our model(s) if we want to
override the default decorator specified in the metamodel).

Decorators for GME v7.6.29 and before used the | MpaDecor at or COM interface for implementation,
and used the plain Windows GDI graphical subsystem to draw the graphics. Newer GME versions use
| MyaEl errent Decor at or interface and GDI + (Gdiplus) for drawing the objects. New GME versions
still support old decorators, but mixing the old GDI and the new GDI + technology can confuse the system
(resulting in graphical errors), so it ishighly advisable to update old decorators to the new scheme. Also, it
is advisable to use Release version decorators with Release version GME, and Debug version decorators
with Debug version GME.

GME instantiates a separate decorator for each object in each aspect, so we have to keep our decorator
code as compact as possible. Decorator components always have to be in-process servers. Using
Decor at or Li b, C++, GDI +, ATL and/or M~C s the recommended way to develop decorators.

7.1. The | MgaEl enent Decor at or interface

The following diagram shows the method invocation sequence on the | MyaEl ermrent Decor at or
interface. Understanding the protocol between GME and the decorators is the key to
developing decorators. All the methods on the decorator interface are called by GME (there is
| MyaEl errent Decor at or Event s interface for well defined callback cases). The direction columnin
the diagram shows the direction of the information flow.

GME aways calls your methodsin aread-only MGA transaction. Y ou must not initiate new transactions
in your decorator. SavesSt at e() isthe only exception to this rule. This method is called in a read-
write transaction, therefore, this is the only place where you can store decorator specific information in
the MGA project.

Table 2. Smplified lifecycle of a decorator object

GME|Dir | Decor ator
=> | decorator class constructor

=> |Get Features([out] features)

=>|Set Paran([in] nanme, [in]value)

<= |Get Paran([in] name, [out] val ue)

=>|lnitializeEx([in] ngaproject, [in] nganetapart, [in] ngafco,
[in] eventSink, [in] parentWd)

<=|CetPreferredSi ze([out] sizex, [out] sizey)
<= |Get Ports([out] portFCOs)
=> |Set Location([in] sx, [in] sy, [in] ex, [in] ey)

<= |Get PortLocation([in] fco, [out] sx, [out] sy, [out] ex, [out]
ey)
<= |Get Label Locati on([out] sx, [out] sy, [out] ex, [out] ey)

46

GME Manua and User Guide

GME|Dir | Decor ator

<= |Get Location([out] sx, [out] sy, [out] ex, [out] ey)
=>|Set Active([in] isActive)

=> |Drawkx([in] hDC, [in] gdip)

=> |SaveSt at e()

=> |Destroy()

7.1.1. | MpaEl enent Decor at or Functions

HRESULT Get Features([out] feature_code *features)

This method tells GME which features the decorator supports. Available feature codes are (can be
combined using the hitwise-OR operator):

F_RESI ZABLE : decorator supports resizable objects

F_MOUSEVENTS : decorator handles mouse events

F_HASLABEL : decorator draws labels for objects (outside of the object)

F_HASSTATE : decorator wants to save information in the MGA project

e F_HASPORTS : decorator supports portsin objects

F_ANI MATI ON: decorator expects periodic calls of its draw method
HRESULT Set Param([in] BSTR nane, [in] VAR ANT val ue)

If there are some parameters specified for this decorator in the meta model, GME will cal this method
for each parameter/value pair.

HRESULT Get Param([in] BSTR nanme, [out] VARI ANT *val ue)

The decorator needs to be able to give back al the parameter/value pairsit got with the Set Par an{ ..)

method.
HRESULT InitializeEx([in] |IMaProject* project, [in] | MjaMetaPart *nmeta, [in] | MaFCO
obj, [in] | MyjaConmonDecor at or Event s event Si nk, [in] ULONGLONG par ent Whd)

Thisisyour constructor-like function. Read all the relevant data from the project and cache them for later
use (it is a better approach than querying the MGA project in your drawing method al the time). GME
will instantiate a new decorator if its MGA object changes.

The decorator can signal certain operations to GME with the event Si nk interface. For example
decorator should notify GME that atitle editing operation is started, and al so when the operation isfinished.

par ent Whd can be used when the decorator wants to create some dialog window. In that case the parent
window of the created dialog should be this parent window. Currently this is used when creating the in-
place title editing window. If we would use just the desktop window as a parent, the application would
flicker during the creation and destruction of the dialog.

You can usethe Decor at or Ut i | s helper facility during the initialization of the decorator and also at
later time. Thefacility provides easier accessto preference and attribute values of an object. Besidesthat, it
contains font, pen, brush and bitmap caches. There'saPr ef er enceMap class used during initialization
to pass various settings, preference and attribute values easily among the Decorator Part objects of the
Decorator Part hierarchy.

47

GME Manua and User Guide

HRESULT Get PreferredSi ze([out] |ong* sizex, [out] |ong* sizey)

Your decorator can give GME a hint about the size of the object to be drawn. You can compute this
information based on the inner structure of the object or based on abitmap size, or even you can read these
values from the registry of the object. However, GME may not take this information into account when it
callsyour Set Locat i on() method. All the size and location parameters arein logical units.

Note that GME redlly tries to preserve the size what you specified, but because of grid snapping logics
and other reasons the final size of the decorator can differ with couple of pixels.

HRESULT Cet Ports([out, retval] |MaFCOs **port FCOs)

If your decorator supports ports, it should give back a collection of MGA objects that are drawn as ports
inside the decorator. GME uses this method along with successive calls on Get Port Locat i on() to
figure out where can it find port objects.

HRESULT Set Location([in] long sx, [in] long sy, [in] long ex, [in] |ong ey)

You have to draw your object exactly to this position in this size. There is no exemption to this. GME
always calls this method before Dr awex () .

HRESULT Get PortLocation([in] | MaFCO *fco, [out] long *sx, [out] long *sy, [out] |ong
*ex, [out] long *ey)

See description of Get Por t s() . Position coordinates are relative to the parent object.

HRESULT Get Label Location([out] long *sx, [out] long *sy, [out] long *ex, [out] |ong
“ey)

If you support label drawing, you have to specify the location of the textbox of your label. This can reside
outside of the object. GME will call Set Locat i on() before this method.

HRESULT Get Location([out] long *sx, [out] long *sy, [out] long *ex, [out] |ong *ey)
Return the coordinates you got in Set Locat i on() .
HRESULT SetActive([in] VAR ANT_BOOL i sActive)

GME calls this method with VARI ANT_FALSE if your object must be shown in gray color. (Eg.: GME
was switched into “set” mode.) By default the decorator should paint its object with the active color.

HRESULT Drawex([in] HDC hdc, [in] ULONGLONG gdi p)

You should draw the graphical representation of the decorator using the supplied
&di pl us: : Graphi cs* object. You have al the required information when this method is called.
Because a Windows CGdi pl us: : Graphi cs* is supplied, the decorator has to be an in-process
server. HDC is provided only for backward compatibility, it is highly recommended to use the
&di pl us: : Graphi cs interface. Decor at or Ut i | s facility makes drawing of bitmaps, shapes and

text very easy.
HRESULT SaveSt at e()

Because this is the only method your decorator is in read-write transaction mode, it has to backup all the
permanent data here.

HRESULT Dest roy()

A destructor-like function. Releasing all your COM pointers (only if it is needed, so if the pointer is not
an intelligent auto pointer like CConPt r <I xyz>) and allocated resourcesis a good practice here.

HRESULT Set Sel ected([in] VARI ANT_BOOL i sSel ect ed)

48

GME Manua and User Guide

GME calls this method when the selected state of the object is changed. You might want to display
dightly different appearanceif it is selected or not. Currently the default decorator usesthisto alow some
operations, for example you can only start to resize a decorator when it is selected. The decorator is the
one who decides if aresize operation should be started so it is needed to know if the object is selected.
(Note: GME draws the selection trackers.)

HRESULT MouseMoved([in] ULONG nFlags, [in] LONG pointx, [in] LONG pointy, [in] HDC
t ransf or nHDC)

GME forwards this message to the decorator when Window's W _MOUSEMOVE is received (more
precisely: MFC's OnMouseMove is received) over the view window and the cursor is close to or
above the particular decorator's area. The decorator can decide if it wants to start some operation or
change the cursor (return S_DECORATOR_EVENT_HANDLED) or do not do anything special (return
S DECORATOR_EVENT_NOT_HANDLED).

nFl ags: Indicates whether various virtual keys are down. This parameter can be any combination of the
following values:

e MK _CONTRQOL : Set if the CTRL key isdown.

« MK _LBUTTON: Set if the left mouse button is down.
e MK_MBUTTON: Set if the right mouse button is down.
e MK_RBUTTON: Setif the SHI FT key is down.

poi nt x and poi nty: specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left corner of the model. Because the model window can be magnified and it can be
scrolled the cursor position to the model window (HWND) can be different. If somebody wantsto calculate
the relative position to the upper-left corner of thewindow, thet r ansf or MTHDCHDC is supplied for that
purpose. Using this HDC the coordinates can be transformed.

If there are more decorators below or close to the cursor, GME forwards the message until the event is
not handled by one of them. If none of the decorators treat the message, then GME's event handler code
will take effect.

HRESULT MouseleftButtonDown([in] ULONG nFlags, [in] LONG pointx, [in] LONG pointy,
[in] HDC transfor nHDC)

GME forwards this message to the decorator when Window's WM LBUTTONDOWN is over the view
window and the cursor is close to or above the particular decorator's area. The decorator can decide if it
wants to start some operation or change the cursor (return S_ DECORATOR_EVENT _HANDLED) or not
do anything special (return S DECORATOR_EVENT_NOT _HANDLED).

For the explanation of parametersand return values seethe Mous eMov ed interface function's explanation.

The same things apply for the following interface functions:
Mouselef t Butt onUp, Mouselef t But t onDoubl ed i ck, MouseRi ght But't onUp,
MouseRi ght But t onDoubl ed i ck, MobuseM ddl eBut t onDown, MouseM ddl eBut t onUp,
MouseM ddl eBut t onDoubl eCl i ck.

HRESULT MouseRi ght Butt onDown([in] ULONGLONG hCt xMenu, [in] ULONG nFl ags, [in] LONG
pointx, [in] LONG pointy, [in] HDC transfornHDC)

This message works almost the same way as the previous mouse messages except one thing: right mouse
button click is the regular method to bring up context menus. When WM RBUT TONDOWN is received by
GME, it constructs a specific context menu. If there are decorators below or near the cursor, they get the
opportunity to add some additional menu items into the menu. If any of the decorators add menu items (or

49

GME Manua and User Guide

complete submenu) to the supplied context menu handle, GME creates a submenu titled “ Decorator Edit”,
and puts the decorator's context menu as a submenu in that.

You should aso treat Menultentel ected function and cal appropriate function on the
| MyaConmronDecor at or Event s interface.

HRESULT Oper ati onCancel ed()

The decorator receives this message from GME if some operation which was initiated by the decorator
(through the | MyjaComonDecor at or Event s interface, like label editing, window resizing or any
other operation) was canceled because of some reason. The decorator should free any resources associated
with the initiated operation on the decorator's side.

HRESULT DragEnter([out] ULONG' dropEffect, [in] ULONGLONG pCd eDat alhj ect, [in] ULONG
keyState, [in] LONG pointx, [in] LONG pointy, [in] HDC transfornHDC)

The decorator receivesthisif the system wants to determine whether adrop can be accepted, and, if so, the
effect of the drop. This message corresponds to the Dr agEnt er message of the | Dr opTar get COM
interface, see MSDN. Other functions of this native Windows interfaceisDr agLeave, Dr agOver and
Dr op, these messageswork with each other. For asimple exampleyou may takealook at the NewSanpl e
decorator code in the SDK\ Decor at or Exanpl es direcotry.

dr opEf f ect : On entry, a pointer to the value of the pdwkf f ect parameter of the DoDr agDr op
function. On return, must contain one of the effect flags from the DROPEFFECT enumeration, which
indicates what the result of the drop operation would be.

pCA eDat aChj ect : Pointer to the CO eDat aChj ect data object. This data object contains the data
being transferred in the drag-and-drop operation. If the drop occurs, this data object will be incorporated
into the target.

keySt at e: The current state of the keyboard modifier keys on the keyboard. Possible values can be
a combination of any of the flags MK_CONTROL, MK_SHI FT, MK_ALT, MK_BUTTON, MK_LBUTTON,
MK_MBUTTON, and MK_RBUTTON.

poi nt x and poi nty: specifies the x- and y-coordinate of the cursor. These coordinates are always
relative to the upper-left corner of the model. Because the model window can be magnified and it can be
scrolled the cursor position to the model window (HWAD) can be different. If somebody wantsto calculate
the relative position to the upper-left corner of the window, the t r ansf or mHDC HDC is supplied for
that purpose. Using this HDC the coordinates can be transformed.

If there are more decorators below or close to the cursor, GME forwards the message until the event is
not handled by one of them. If none of the decorators treat the message, then GME's event handler code
will take effect.

HRESULT DragOver ([out] ULONG dropEffect, [in] ULONGLONG pCd eDat aChj ect, [in] ULONG
keyState, [in] LONG pointx, [in] LONG pointy, [in] HDC transfornHDC)

GME sends calls that function on the decorator in order to be able to provide target feedback to the user
and communicates the drop's effect to the DoDr agDr op function so it can communicate the effect of the
drop back to the source.

For the explanation of the parameters see Dr agEnt er function.

HRESULT Drop([in] ULONGLONG pCd eDat aChject, [in] ULONG dropEffect, [in] LONG pointx,
[in] LONG pointy, [in] HDC transfor mHDC)

GME sends callsthat function to instruct the decorator to incorporates the source datainto the target place,
remove the target feedback, and release the data object.

50

GME Manua and User Guide

For the explanation of the parameters see Dr agEnt er function.

HRESULT DropFile([in] ULONGLONG hDroplnfo, [in] LONG pointx, [in] LONG pointy, [in]
HDC t r ansf or nHDC)

Dr opFi | e isacompletely different way to handl e possible drop operations, than the previously seenthree
| Dr opTar get -like methods. While the previous three method usually used during drag-drop operations
initiated inside the GME environment, Dr opFi | e only capable of dealing with file drop operations.

hDr opl nf o: Handle to a native Win32 internal drop structure. Use the Dr agQuer yFi | e Win32 API
function to query and treat this handle.

For a simple example you may take alook at the NewSanpl e decorator code in the SDK\ Decor at or
Exanpl es directory.

For the explanation of the coordinate and coordinate transformation parameters, see Dr agEnt er
function.

7.2. The | MyaEl enent Decor at or Event s interface

On the | MgaEl enrent Decor at or interfface GME can communicate towards the decorators. Since
the new decorators supposed to be able to initiate label editing, resize and other operations, an
interface is needed through which the decorator can communicate back to GME. This is the
| MgaEl errent Decor at or Event s interface.

One of the main reasons for that is because of a thing mentioned earlier: GME aways calls
| MyaEl emrent Decor at or methods in a read-only MGA transaction. Because GME refreshes the
view after every operation, a decorator cannot open a transaction because the refresh includes the
destruction of the decorator itself and a creation of a new decorator. For that reason GME should open
and commit the transaction associated to the needed operation somehow. This is done with the help of
| MyaEl emrent Decor at or Event s interface.

Usually events which signal some kind of operation start can open a transaction on the GME's
side. Often for performance reasons the transaction is only opened in the operation finished
function and the transaction is committed during the final call (Label Editi ngFi ni shed,
W ndowResi zeFi ni shed).

The interface also contains other useful functions to indicate cursor change on the decorator side,
cancellation of an operation, or needed Ul refresh.

Thefollowing table illustrates alabel editing process:

Table 3. Label editing process

GME|Dir | Decorator

=> |MouseMoved(nFl ags, pointx, pointy, transfornHDC)

=> |Set Sel ect ed(VARI ANT_TRUE)

<= |Cur sor Changed(LONG newCur sor | D)

=> |Mouselef t But t onDown(nFl ags, poi ntx, pointy, transfornHDC)
<= |Label Edi ti ngStarted(nFl ags, left, top, right, bottom

<= |Label Changed(BSTR newLabel)

<= |Label Edi ti ngFi ni shed(nFl ags, left, top, right, bottom

<= |Cur sor Rest or ed()

51

GME Manua and User Guide

The following table illustrates a window resize process:

Table 4. Window resize process

GME|Dir | Decorator

=> |MouseMoved(nFl ags, pointx, pointy, transfornHDC)

=> |Set Sel ect ed(VARl ANT_TRUE)

<= |Cur sor Changed(LONG newCur sor | D)

=> |Mouselef t But t onDown(nFl ags, poi ntx, pointy, transfornHDC)
<= |W ndowResi zi ngSt art ed(nFl ags, left, top, right, bottom
=> |MouseMoved(nFl ags, pointx, pointy, transformHDC)

<= |W ndowResi zi ng(nFl ags, left, top, right, botton

=> |Mouseleft Butt onUp(nFl ags, pointx, pointy, transfornHDC)
<= |W ndowResi zed(nFl ags, deltax, deltay)

<= |W ndowResi zi ngFi ni shed(nFl ags, left, top, right, bottom
<= |Cur sor Rest or ed()

7.2.1. 1 MpaEl enent Decor at or Event s Functions

HRESULT Refresh([in] refresh_node_enum refreshMWde)

This function signals to GME that a Ul refresh is needed. The decorator can specify to GME what kind
of refresh is wanted:

* RM_NOREFRESH: No refresh

RM_REDRAW SELF : A graphical Ul redraw

* RM REGENERATE_SELF : complete refresh of the owner model's view including regeneration of the
decorators

RM_REGENERATE_PARENT_AL SO : complete refresh of the owner model's parent model's view (if
it is open) including regeneration of the decorators

* RM REGENERATE_ALL_VI EWS : regeneration of all open views

HRESULT Oper at i onCancel ed()

The decorator signals GME that an initiated operation was canceled because of some reason. The reason
can be anything but it emerged on the decorator's side, and a cancel decision was made. The operation
was started by the decorator also in the past.

HRESULT Cur sor Changed([in] LONG newCur sor| D)

The decorator signals GME that the cursor is changed. The newCur sor | D parameter indicates the new
form of the cursor.

HRESULT Cur sor Rest or ed()
The decorator signals GME that the previously changed cursor isrestored to its original state.

HRESULT Label EditingStarted([in] LONG left, [in] LONGtop, [in] LONG right, [in] LONG
bot t om

52

GME Manua and User Guide

The decorator tells GME that a label editing operation is started. The coordinates specify the operation's
(the label) area.

HRESULT Label Edi ti ngFi ni shed([in] LONG left, [in] LONGtop, [in] LONGright, [in] LONG
bot t om)

The decorator tells GME that alabel editing operation is finished. The coordinates specify the operation's
(the label) area. This should be the last message, because thiswill issue the transaction commit command.
The Label Changed message must precedeit!

HRESULT Label Changed([in] BSTR newLabel)

The decorator tells GME that the new value of the label is finalized and the transaction can be opened.
The newLabel is passed to GME, but the decorator is responsible for issuing the actual label change
command, because it can be very different: changing a preference or an attribute. The decorator must
cal Label Changed function before modifying the mga object. The decorator also must call the
Label Edi t i ngFi ni shed function after that, in order to have the transaction committed by GME.

HRESULT Label Movi ngStarted([in] LONG nFlags, [in] LONG left, [in] LONG top, [in] LONG
right, [in] LONG bottom

The decorator tells GME that alabel moving operation is started. The coordinates specify the operation's
(the label) area. Note that currently none of the GME's bundled decorators (default (box) decorator, UML
decorator, meta decorator) use this feature.

nFl ag came from a GME message (see Mouselef t But t onDown above for example), and can be
forwarded back to GME for completeness, but currently GME doesn't use it.

HRESULT Label Moving([in] LONG nFlags, [in] LONG left, [in] LONG top, [in] LONG right,
[in] LONG bottom

The decorator tells GME that the label position is changed, and we are still in the label moving operation.
The coordinates specify the actual location of the label.

HRESULT Label Movi ngFi ni shed([in] LONG nFlags, [in] LONG left, [in] LONGtop, [in] LONG
right, [in] LONG bottom

The decorator tells GME that a label moving operation is finished. The coordinates specify the actual
location of the label. This should be the last message, because this will issue the transaction commit
command. The Label Moved message must precede it!

HRESULT Label Moved([in] LONG nFlags, [in] LONG x, [in] LONGy)

The decorator tells GME that the new location of the label isfinalized and the transaction can be opened.
Thex andy parameters are the delta values compared to the previous location of the label. The decorator
must call Label Moved function before modifying the mga object. The decorator also must call the
Label Movi ngFi ni shed function after that, in order to have the transaction committed by GME.

HRESULT Label Resi zi ngStarted([in] LONG nFlags, [in] LONG left, [in] LONG top, [in] LONG
right, [in] LONG bottom

The decorator tells GME that alabel resizing operation is started. The coordinates specify the operation's
(the label) area. Note that currently none of the GME's bundled decorators (default (box) decorator, UML
decorator, meta decorator) use this feature.

nFl ag came from a GME message (see MouselLef t But t onDown above for example), and can be
forwarded back to GME for compl eteness, but currently GME doesn't use it.

HRESULT Label Resi zi ng([in] LONG nFlags, [in] LONG left, [in] LONGtop, [in] LONG right,
[in] LONG bottom

53

GME Manua and User Guide

The decorator tells GME that the label sizeis changed, and we are still in the label resizing operation. The
coordinates specify the actual location of the label.

HRESULT Label Resi zi ngFi ni shed([in] LONG nFlags, [in] LONG left, [in] LONG top, [in]
LONG right, [in] LONG botton)

The decorator tells GME that a label resizing operation is finished. The coordinates specify the actual
location of the label. This should be the last message, because this will issue the transaction commit
command. The Label Resi zed message must precedeit!

HRESULT Label Resi zed([in] LONG nFlags, [in] LONG x, [in] LONGy)

The decorator tells GME that the new location of the label isfinalized and the transaction can be opened.
Thex andy parameters are the delta values compared to the previous location of the label. The decorator
must call Label Resi zed function before modifying the mga object. The decorator also must call the
Label Resi zi ngFi ni shed function after that, in order to have the transaction committed by GME.

HRESULT General OperationStarted([in] ULONGLONG operati onDat a)

The decorator tells GME that some editing operation is started. GME will open a transaction as a result
of this message. If the decorator handles some user defined data to the GME in the parameter, it will
get it back later when the Gener al Qper at i onFi ni shed iscalled. Decorator can give a pointer to a
memory object or just NULL as adata.

HRESULT Gener al Oper ati onFi ni shed([out] ULONGLONG* operati onDat a)

The decorator tells GME that the previously started operation is finished. GME will commit the opened
transaction as a result of this message. If the decorator wants to cancel the operation, it can call the
Oper at i onCancel ed function.

HRESULT W ndowiMbvi ngStarted([in] LONG nFlags, [in] LONG left, [in] LONG top, [in] LONG
right, [in] LONG bottom

The decorator tells GME that awindow moving operation is started. The coordinates specify the operation's
(the window) area. Note that currently none of the GME's bundled decorators (default (box) decorator,
UML decorator, meta decorator) use this feature.

nFl ag came from a GME message (see MouselLef t But t onDown above for example), and can be
forwarded back to GME for compl eteness, but currently GME doesn't use it.

HRESULT W ndowibvi ng([in] LONG nFlags, [in] LONG left, [in] LONG top, [in] LONG right,
[in] LONG bottom

The decorator tells GME that the window position is changed, and we are still in the window moving
operation. The coordinates specify the actual location of the window.

HRESULT W ndowibvi ngFi ni shed([in] LONG nFlags, [in] LONG left, [in] LONG top, [in] LONG
right, [in] LONG bottom

The decorator tells GME that a window moving operation is finished. The coordinates specify the actual
location of the window. This should be the last message, because this will issue the transaction commit
command. The W ndowiVbved message must precede it!

HRESULT W ndowibved([in] LONG nFlags, [in] LONG x, [in] LONGy)

The decorator tells GME that the new location of the window is finalized and the transaction can be
opened. The x and y parameters are the delta values compared to the previous location of the window.
The decorator must call W ndowivbved function before modifying the mga object. The decorator also
must call the W ndowibvi ngFi ni shed function after that, in order to have the transaction committed
by GME.

GME Manua and User Guide

HRESULT W ndowResi zi ngStarted([in] LONG nFlags, [in] LONG left, [in] LONG top, [in]
LONG right, [in] LONG bottom

The decorator tells GME that a window resizing operation is started. The coordinates specify the
operation's (the window) area. Note that currently none of the GME's bundled decorators (default (box)
decorator, UML decorator, meta decorator) use this feature.

nFl ag came from a GME message (see MobuselLef t But t onDown above for example), and can be
forwarded back to GME for completeness, but currently GME doesn't use it.

HRESULT W ndowResi zi ng([in] LONG nFlags, [in] LONG left, [in] LONG top, [in] LONG
right, [in] LONG bottom

Thedecorator tells GME that thewindow sizeischanged, and we are still in the window resizing operation.
The coordinates specify the actual location of the window.

HRESULT W ndowResi zi ngFi ni shed([in] LONG nFlags, [in] LONG left, [in] LONG top, [in]
LONG right, [in] LONG bottom

The decorator tells GME that awindow resizing operation is finished. The coordinates specify the actual
location of the window. This should be the last message, because this will issue the transaction commit
command. The W ndowResi zed message must precede it!

HRESULT W ndowResi zed([in] LONG nFlags, [in] LONG x, [in] LONGYy)

Thedecorator tells GME that the new location of thewindow isfinalized and the transaction can be opened.
Thex andy parametersarethedeltaval uescompared to the previouslocation of thewindow. Thedecorator
must call W ndowResi zed function before modifying the mga object. The decorator also must call the
W ndowResi zi ngFi ni shed function after that, in order to have the transaction committed by GME.

7.3. Visual Studio 2008 Decorator Wizard

The first time you wish to create a decorator project, you must run C: \ Pr ogr am Fi | es\ GVE\ SDK
\ Decor at or W zar d\ set up90. j s. Thisregisters the decorator project type in Visual Studio.

To create a Decorator project, open Visua Studio 2008. Go to File | New Project. Under Visual C++,
select GME, then the Decorator template. Give the project a name, then hit OK. The wizard generates
UUIDs/CLSIDS/GUIDs automatically, and does every required modification to the skeleton code.

Figure 27. Starting the Decorator Wizard

NewiEroject JJ
Project bypes: Templates: MET Framework 3.5 ==
= Wisual CH+ vis dio installed templates
ATL
CLR P GHME BON 2 Companent
General S GME BON Compenent P GME Raw Companent
MFC §F LOM Interpreter
Smart Device
Test My Templates
Win3z
GME) Search Online Templates...
WiX
& Other Languages
- Other Praject Types
- Test Projects
Decarator Wizard
fame: Decoratorl
Location: CtitempiPlugin probe
Solution: Create new Solution [l create directory for solution

55

GME Manua and User Guide

Theresulting configuration is aready-to-compile Visual Studio 2008 Sol ution |everaging capabilites of the
new Decor at or Li b library and shows the same demo features as the NewSanpl e sample decorator
code. The user is expected to implement the component by modifying appropriate files of the skeleton
code. For further details see the section on Decor at or Li b and decorator example codes.

After building the project, the decorator . dl | isregistered.

7.4. Using the Decorator sample/skeleton codes

The recommended method for decorator development isthe Decorator Wizard, see previous section. If for
some reason you want to edit sample codes directly, there are still two types of sample projects provided
inthe C: \ Pr ogr am Fi | es\ GVE\ SDK\ Decor at or Exanpl es directory.

The NewSanpl e sample takes advantage of the class hierarchy and utilities provided by the new
Decor at or Li b library. The source code is intended to be used with Microsoft Visual Studio 2008.
Because of the new Decor at or Li b, the sample can inherit resizability properties and in-place label
editing features from the infrastructure. It also demonstrates context menu usage and drag-drop handling.

In case of the NewSanpl e decorator you first haveto adjust Decor at or Li b. vcpr oj project filepath
(thisis part of the solution) in the Visual Studio Solution file. Unfortunately in case of Solution (. sl n)
files Visua Studio cannot resolve environment variables so GVE_ROOT cannot be used. Y our solution's
relative path is probably different from the SDK sample so you have to tuneit. Thisisnot aproblem with
the Wizard because it does this all automatically.

The PI ai nSanpl e source code provides a really stripped down example implementation containing
only the flat implementation of the interface and not leveraging the new Decor at or Li b. The example
still demonstrates very simple drawing, context menu extension and file drop handling. This sample code
intended to be used with Microsoft Visual Studio .NET 2003.

Modifying the Decor at or Conf i g. h filewould be your first step when using the skeleton code.
The following modifications have to be made:

e Giveanew valueto TYPELI B_UUI D (anew ID can be generated by the guidgen tool, found in Visual
Studio)

» Giveanew valueto TYPELI B_NAME (at least replace the string between the parenthesis)

* Giveanew valueto COCLASS UUI D (anew ID can be generated by the guidgen tool, found in Visual
Studio)

» Giveanew valueto COCLASS NAME (at least replace the string between the parenthesis)
» Giveanew valueto COCLASS PROG D (at least replace the last tag of the string)
» Giveanew valueto DECORATOR_NAME

» Set GVE_| NTERFACES BASE to point to the interfaces directory of your GME source code (or GME
installation, if you don't have source code)

Y ou have to make these modifications only once. When you are upgrading your decorator SDK, create a
backup of your Decor at or Conf i g. h, and restore it after the upgrade.

7.5. Using the Decor at or Li b library

Thenew box decorator (GME'sdefault decorator), annotator decorator, metadecorator and UML decorator
al usethe Decor at or Li b helper library. The goals of thislibrary are asfollows:

56

GME Manua and User Guide

* It abstracts the COM interface and provides a higher level C++ interface
* It makes COM object handling easier
* It provides severa building block classes called “ decorator parts”

» With the help of the decorator parts you can get many handy features for free: resizability, in-place text
editing, vector shapes, shape shadows and gradient fills

» With the use of the DecoratorUtil (it is part of the Decor at or Li b) it is easier to access
preferences and attributes of the mga objects

e Decorator Uil aso provides cached pen, brush and font object to make the drawing operations
resource aware

» DecoratorUtil asomaketextdrawing and measurement and other graphical operations easier.
Using the Decor at or Li b library requires from you the following in you Visual Studio project:
* Visual Studio 2008 is the supported IDE

» Add DecoratorLib.vcproj project (located in the SDK) into your Solution, and set it as a
dependency prerequisite for your Decorator project

» Alsolink gdi pl us. | i b into your project

It is recommended to use the Decorator Wizard to start the development. If you start from scratch for
some reason, you can start your project based on the NewSanpl e sample decorator, or one of the existing
decorators, which are part of the GME source code: MgaDecorators, UML decorator (source can be found
in the SDK also) or Meta decorator.

The new class library hierarchy is based on the Par t | nt er f ace C++ interface which is higher-level
and much nicer than the plain COM interface level. There's a complete class hierarchy, where the root
classisthe Par t Base. You can use Conposi t ePar t and other Parts as building blocks to relatively
easily add rich functionality to your decorator. Some typical building blocks:

» Typeabl eBi t mapPart : a building block which can display bitmaps. It can aso display “type”,
“subtype” and “reference” tiny marker icons to clearly indicate these circumstances visualy.

» Typeabl eLabel Part : Besidesdisplaying the label of an object and allowing in-place editing of the
text, it is able to display type information about the object.

» Obj ect AndText Part: Conposi t ePart isageneral way to put any kind of parts together, but
usually a decorator consists of some graphics (bitmap, vectorial) and alabel. Obj ect AndText Part
makes this dual configuration easier to implement.

» Vect or Part: The vector part uses its own scheme to describe vectorial graphics, but there are
severa ready-to-use vectorial shapes, like: Tri angl eVector Part, El | i pseVectorPart or
Di anondVect or Part .

The main task is to decide which decorator parts represent the functionality needed by the
decorator and instantiate them at the proper time. In the NewSanpl e example this place is the
Sanpl eConpositePart:: I nitializeEx function, where currently we add a vector part and a
label part to the encapsulating composite part. The UML and the Meta decorator source contains a switch
here, the branching decision is made according to the name of the meta object. For example in case
of constraint meta elements, the needed constraint vectorial parts are used as the graphical part of the
decorator.

57

GME Manua and User Guide

You can use the Pr ef er enceMap container to pass various settings of the decorators between the parts
during the initialization phase.

After building up your decorator you probably want to customize it with extra functionality. Y ou should
use the Decor at or Ut i | s helper singleton class wherever it's possible to save system resources and
you can implement certain tasks easier with it:

* You can more easily access preferences and attributes of the mga objects; see get At t ri but e and
get Pr ef er ence functions.

* You can get cached pen, brush and font objects to make the drawing operations resource aware, see
Get Font , Get Pen, Get Br ush functions.

* You can make text drawing and measurement and other graphical operations easier, see
Measur eText, DrawSt ri ng, Dr awRect , Dr awBox, get Gr aphi c¢s, get Bi t map functions.

7.6. Assigning decorators to objects

Y ou can assign decorators to objectsin your metamodel or even later in your model(s). In the MetaGME
environment there is a Decorator attribute for each non-connection FCO where you can specify a COM
ProglD along with optional parameter/value pairs for a class. The format of this string is as follows:

Progl D paranil=val uel, paran=val ue2,

e.g.:
MGA. Decor at or . Met aDecor at or showattri but es=fal se, showabstract=true

In your models all the non-connection FCOs have a preference setting called Decorator. The format of
this string isidentical to the one in the meta model.

58

GME Manua and User Guide

8. Metamodeling Environment

The metamodeling environment has been extended with anew decorator component in version 1.2 or later.
It displays UML classes including their stereotypes and attributes. Proxies also show this information. It
resizes UML classes accordingly.

GME has a OCL syntax checker add-on for the metamodeling environment. Every time a constraint
expression attribute is changed, this add-on is activated. Note that the target paradigm information is not
available to thistool, therefore, it cannot check arguments and parameters, such as kindname. These can
only be checked at constraint evaluation timein your target environment.

8.1. Step by step guide to basic metamodeling

The following sections describe the concepts that are used to model the output Paradigm.

8.1.1. Paradigm

The Paradigm is represented as the model that containsthe UML class diagram. The name of the Paradigm
model isthe name of the paradigm produced by the interpreter. The attributes of the Paradigm are Author
Information and Version Information.

8.1.2. Folder

A Folder is represented as a UML class of stereotype «folder». Folders may own other Folders, FCOs,
and Constraints. Once a Folder contains another container, it by default contains all FCOs, Folders, and
Constraints that are in that container. Folders are visualized only in the model browser window of GME,
and therefore do not use aspects. A Folder has the Displayed Name, and In Root Folder attributes.

8.1.2.1. How to specify containment for a Folder
Folder containment applies to Folders and Models that may be contained in a Folder.

In the figure below, the UML diagram outlines the containment scheme of a paradigm for a sports season.
To specify containment for a Folder, follow these steps.

1. Createthe Folder and itemit contains (through insertion, or dragging from the parts menu)
2. Connect theitem to the Folder

Now, the Folder contains the item.

Figure 28. Example of a Folder containment

Baseball Basketball
<<Folder>> <<Folder>>

Game AllStarGame Postseason
<<Model>> <<Folder>> <<Folder>>

59

GME Manua and User Guide

8.1.2.2. FCO

Thisisaclassthat ismandatorily abstract. The purpose of this classisto enable objectsthat are inherently
different (Atom, Reference, Set, etc.) to be able to inherit from a common base class.

To avoid confusion with the generalization of modeling concepts (Model, Atom, Set, Connection,
Reference) called collectively an “FCO”, and this kind of object in the metamodeling environment which
is caled an “FCO", the metamodeling concept (that would actually be dragged into a Paradigm model)
will be shown in regular font, while the generalization of typeswill bein italics as FCO. An FCO hasthe
Is Abstract and General Preferences attributes. All FCO-swill also have these attributes.

8.1.2.2.1. How to create an FCO

An FCO (like all FCO-9) is created by dragging in the atom corresponding to its stereotype, or inserting
the atom through the menu.

8.1.2.2.2. How to specify an Attribute for an FCO
1. Create and configure the Attribute and the FCO.
2. Connect the Attribute to the FCO
Now, the Attribute belongs to the FCO.

8.1.2.3. Atom

The Atom is the simplest kind of object in one sense, because it cannot contain any other parts; but it is
complex to define because of the many different contributions it can make to aModel, Reference, etc.

An Atom has the Icon Name, Port Icon Name, and Name Position attributes.
8.1.2.3.1. How to set that an Atom is a Port
1. Configure the Atom to be a member of a Model
2. Click on the attributes of the Containment association between the Atom and the Model
3. Assert the Object Is A Port attribute.
8.1.2.4. Reference

To represent a Reference class, two things must be specified: the FCO to which this Reference refers, and
the Model to which the Reference belongs. A Reference has the Icon Name and Name Position attributes.

Figure 29. Example of a Reference.

0. Reference
<<Reference>>
0.
Atomn
<<Atom==

8.1.2.4.1. How to specify containment of a Reference in a Model

Model
<<Model>>

1. Connect the Reference to the Model

60

GME Manua and User Guide

2. Resolve the prompt for connection type as “ Containment”.
8.1.2.4.2. How to specify the FCO to which a Reference refers
1. Connect the Reference to the FCO.

2. If the FCO is of type Model, an additiona prompt is displayed (exactly the same as when giving
ownership to the Model asin the previous step). Thistime, choose the “Refer” type of connection. If
the FCO is not of type Model, then no additional input is necessary.

3. When specifying the rolesto which a Reference may refer (that is, if the referred FCO may play more
than one kind of role in a particular Model), the current solution is that it may refer to al roles of
that particular kind. However, in the future, this list may be modified during paradigm construction
through the help of an add-on.

8.1.3. Connection

Connection In order for aConnection to be legal within aModel, it must be contained through aggregation
in that Model. The Connection is another highly configurable concept. The attributes of a Connection
include Name Position, 1% destination label, 2" destination label, 1% sourcelabel, 2" sourcelabel, Color,
Linetype, Line end, and Line Sart.

Figure 30. Example of a Connection

AtomZ
<<Atom=>>

0.7 [eee

Connection
<<Connection>>

0.* [dst

Atomn
<<Atom=>>

8.1.3.1. How to specify a connection between two Atoms

In addition to Atoms, a Reference to an Atom may also be used as an endpoint of the Connection. Note
that Connection is aso usable as an endpoint, but there is currently no visualization for this concept.

1. DraginaConnector Atom (the name of the Connector was deleted in the example figure)

2. Connect the source Atomto the Connector

3. Connect the Connector to the destination Atom

4. Connect the Connector to the Connection. Resolve the Connection type to “ AssociationClass’

The rolenames of the connections (“src” and “dst”) denote which of the Atoms may participate as the
source or destination of the connection. There may be only one source and one destination connection to
the Connector Atom.

Inheritance is a useful method to increase the number of sources and destinations, since all child classes
will also be sources and destinations.

Currently, al possible FCO source/destination combinations will be used in the production of the
metamodel. However, in future revisions of the metamodeling environment, the list of alowable

61

GME Manua and User Guide

connections may be modified at model building time (to eliminate certain possibilities from ever
occurring).

8.1.4. Set

The Set isamore general case of the Reference. Sets have the Icon name, and Name Position attributes.

The members of the Set are “owned” by the Set through the “ SetMembership” connection kind (when
connecting the Reference to the Set, the user will be prompted to choose between the “ SetMembership”
and “ReferTo” connection kinds). Some underlying assumptions exist here, such as all members of the
Set must be members of the Model to which this set belongs.

Figure 31. Example of a Set

Model [Atom
<<Model>> <<Atom=>

0. Refarance
<<Refarance=>>

0.* [

Set Model
<<Sat>> <=Modal>>

8.1.4.1. How to specify what FCO-s a Set “Owns”

Connect the FCO to the Set Atom. In the event of an ambiguity, resolve it with the SetMembership
connection type.

Make sure to aggregate the Set to the Model in which it will reside.

8.1.5. Model

The Model may contain (through the “ Containment” connection type) any other FCO, and it associates a
role name to each FCO it contains. The Model has the Name Position and In Root Folder attributes.

8.1.5.1. How to contain a Model (Model-1) in a Model (Model-0)

* Connect Model-1 to Model-0
Note
Itis possibleto have aModel contain itself (the previous case where Model-1 == Model-0).
8.1.5.2. How to contain an Atom in a Model

In the event that an FCO is used as a superclass for the Model, then FCO may replace Model in the
following sequence. Atom may be replaced by Set, Reference, or Connection.

1. Create and configure the Atom and the Model

2. Connect the Atom to the Model

62

GME Manua and User Guide

8.1.6. Attributes

Attributes are represented by UML classes in the GME metamodeling environment. There are three
different kinds of Attributes: Enumerated, Field, and Boolean. Once any of these Attributes are created,
they are aggregated to FCO-s in the Attributes Aspect. The order of attributes an FCO will have is
determined by the relative vertical location of the UML classes representing the attributes.

8.1.7. Inheritance

Inheritance is standard style for UML. Any FCO may inherit from an FCO kind of class, but an FCO may
inherit only from other FCOs. Kinds may inherit only from each other (e.g. Model may not inherit from
Atom). When the class is declared as abstract, then it is used during generation, but no output FCO is
generated. No class of kind FCO is ever generated.

When multiple-inheritance is encountered, it will aways be treated as if it were virtual inheritance. For
example, the classic diamond hierarchy will result in only one grandparent class being created, rather than
duplicate classes for each parent.

8.1.7.1. How to Specify Inheritance

It isassumed that Child and Parent are of the same kind (e.g. Atom, Model). FCO is used in this example,
for brevity, but note that any FCO may participate in the Child role, if the Parent is of kind FCO. Else,
they must match.

1. Connect the Parent FCO to the Inheritance Atom. This creates a superclass.

2. Connect the Inheritance atom to the Child FCO. This creates the child class.

8.1.8. Aspect

This set defines the visualization that the Models in the destination paradigm will use. Models may
contain Aspects through the “HasAspect” connection kind. Thisis visualized using the traditional UML
composition relation using a filled diamond. FCOs that need to be shown in the an aspect must be made
members of the given Aspect set.

GME supports aspect mapping providing precise control over what aspect of amodel isshown in an aspect
of the containing model. Thisisadvanced rarely-used usually featureistypically appliedin caseacontainer
and a contained models have digjoint aspect sets. Specifying aspect mapping would be to cumbersome
in a UML-like graphical language. The metamodeling interpreter allows specifying thisinformation in a
dialog box (described in detail later).

8.2. Composing Metamodels

The composable metamodeling environment released with GME v1.1, supports metamodel composition.
First, it supports multiple paradigm sheets. Unlike most UML editors, where boxes representing classes
are tied together by name, GME uses references. They are called proxies. Any UML class atom can have
multiple proxies referring to it. These references are visualized by a curved arrow inside the regular UML
classicon. The atom and all its proxies represent the same UML class.

8.2.1. Operators

In addition to improving the usability of the environment and the readability of the metamodels, the
primary motivation behind composable metamodeling is to support the reuse of existing metamodels and,
eventually, to create extensive metamodel libraries. However, this mandates that existing metamodels
remain intact in the composition, so that changes can propagate to the metamodels where they are used.

63

GME Manua and User Guide

The above requirement and limitations of UML made it necessary to develop three operators for use in
combining metamodel s together: an equivalence operator, an implementation inheritance operator, and an
interface inheritance operator.

8.2.1.1. Equivalence operator

The equivalence operator is used to represent the (full) union between two UML class objects. The two
classes cease to be two separate classes, but form a single class instead. Thus, the union includes all
attributes and associations, including generalization, specialization, and containment, of each individual
class. Equivalence can be thought of as defining the “join points’ or “composition points’ of two or more
source metamodels.

8.2.1.2. Implementation inheritance operator

The semantics of UML specialization (i.e. inheritance) are straightforward: specialized (i.e. child) classes
contain all the attributes of the general (parent) class, and can participate in any association the parent can
participate in. However, during metamodel composition, there are cases where finer-grained control over
the inheritance operation is necessary. Therefore, we have introduced two types of inheritance operations
between class objects—implementation inheritance and interface inheritance.

In implementation inheritance, the subclass inherits al of the base class attributes, but only those
containment associations where the base class functions as the container. No other associations are
inherited. Implementation inheritance is represented graphically by a UML inheritance icon containing a
solid black dot.

This can be seen in the left hand side diagram in the figure below, where implementation inheritance is
used to derive class X1 from class B1. In this case, X1 the association allowing objects of type C1 to be
contained in objects of type B1. In other words, X 1-type objects can contain C1-type objects. Because B1-
type objects can contain other B1-type objects, X 1-type objects can contain objects of type B1 but not of
type X 1. Note that D1-type objects can contain objects of type B1 but not objects of type X1.

8.2.1.3. Interface inheritance operator

Theright side of the figure shows interface inheritance between B2 and X2 (the unfilled circle inside the
inheritance icon denotes interface inheritance). Interface inheritance allows no attribute inheritance but
does allow full association inheritance, with one exception: containment associations where the base class
functions as the container are not inherited. Therefore, in this example, X2-type objects can be contained
in objects of type D2 and B2, but no objects can be contained in X2-type objects, not even other X2-
type objects.

The union of implementation inheritance and interface inheritance is the normal UML inheritance. It
should also be noted that these operators could have been implemented using UML stereotypes. However,
interface and implementation inheritance are semantically much closer to regular inheritance than to
associations. Therefore, the use of association with stereotypes would be misleading.

Figure 32. Implementation and interface inheritance operators

B1 0. c1 B2 0. cz
<<Model>= [0~ <<Model>> <<Model>> [0~ <<Model=>
0. 0.*

X2 D2
<<Model>> <<Model>>

X1 D1
<<Model>> <<Model>>

GME Manua and User Guide

8.2.1.4. Aspect equivalence

Since classes representing Aspects show up only in the Visualization aspect, another operator is used to
express the equivalence of aspects, called the SameAspect operator. While aspects can have proxies as
well, they are not sets any more; they are references. Hence, they cannot be used to add additional objects
to the aspect. In this case, a new aspect needs to be created. New members can be added to it, sinceit is
a set. Using the SameA spect operator and typically a proxy of another aspect, the equivalence of the two
aspects can be expressed.

Note that having two aspects with the same name without explicitly expressing the equivalence of them
will result in two different aspect in the target modeling paradigm.

The name of the final aspect is determined by the following rules. If an equivalenceis expressed between
aproxy and aUML class, the name of the classis used. If one of them is abstract and the other is not, the
name of the non-abstract class (or proxy) is used. If both aspects are proxies (or classes), then the name
of the SameAspect operator is used.

Currently, the order of aspectsin the target paradigm is determined by the relative vertical position of the
aspect set icons in the metamodels.

8.2.1.5. Folder equivalence

The equivalence of folders can be expressed using the SamefFolder operator.

8.3. Generating the Target Modeling Paradigm

Once the Paradigm Moddl is complete, then comes time to interpret the Model. Interpretation can be
initiated from any model. After extensive consistency checking, theinterpreter displaysadialog box where
aspect mapping information can be specified.

8.3.1. Aspect Mapping

Thedialog box contains as many tabs asthere are distinct aspectsin the target environment. Under each tab
alistbox displays all possible model-role combinations in the first column. The second column presents
the available aspects for the given model and model reference (i.e. in the specified role) in a combo box.
The default selection is the aspect with the same name as the container models aspect. For al other FCOs
(atoms, sets, connections) this files shows N/A.

The third column is used to specify whether the given the aspect is primary or not for the given FCO (i.e.
in the specified role). In a primary aspect, the given FCO can be added or deleted. In a secondary aspect,
it only shows up, but cannot be added or deleted.

Note that al the information provided by the user through this dialog box is persistent. It is stored in the
metamodel, in the registry of the corresponding objects. A subsequent invocation of the interpreter will
show the dialog box with the information specified by the user the previous time.

8.4. Attribute Guide

Each attribute of any given FCO in the Metamodeling environment has a specific meaning for the output
paradigm. This section describes each attribute, and lists the FCO(s) in which the attribute resides.
Attributes are listed by the text prompted on the screen for their entry. The section also gives what special
instructions (if any) are necessary for filling out the attribute.

65

GME Manua and User Guide

For fields, if the default value of the field is“”, then no default value is specified in the description. All
other attributes list the default value.

1st source label String value that gives the name of the Attribute class to be displayed
there. The Attribute should aso belong (through aggregation) to the
Connection. Then, the value of that Attribute will be displayed in the
first position at the end of the source of the connection.

Contained in — Connection

2nd source label String value that gives the name of the Attribute class to be displayed
there. The Attribute should also belong (through aggregation) to the
Connection. Then, the value of that Attribute will be displayed in the
second position at the end of the source of the connection.

Contained in — Connection

1st destination label String value that gives the name of the Attribute class to be displayed
there. The Attribute should also belong (through aggregation) to the
Connection. Then, the value of that Attribute will be displayed in the
first position at the end of the destination of the connection.

Contained in — Connection

2st destination label String value that gives the name of the Attribute class to be displayed
there. The Attribute should also belong (through aggregation) to the
Connection. Then, the value of that Attribute will be displayed in the
second position at the end of the destination of the connection.

Contained in — Connection

Abstract Boolean checkbox that determines whether or not the FCO in question
will actually be generated in the output paradigm. If the checkbox is
checked, then no object will be created, but all properties of the FCO
will be passed down to itsinherited children (if any).

Default value — Unchecked

Contained in — FCO, Atom, Model, Set, Connection,
Reference

Author Information A text field trandlated into a comment within the paradigm output file.
Contained in — Paradigm

Cardinality Text field that gives the cardinality rules of containment for an
aggregation.

Default value—0..*
Contained in — Containment, Folder Contai nment

Color String value that gives the default color value of the connection
(specified in hex, ex: 0xFF0000).

Default value — 0x000000 (black)

Contained in — Connection

66

GME Manua and User Guide

Composition role

Constraint Equation

Context

Datatype

Decorator

Default = ‘ True

Default parameters

Default menu item

Description

Displayed name

Field default

General preferences

Text field that gives the rolename that the FCO will have within the
Model.

Contained in — Contai nment

Multiline text field that gives the equation for the constraint.
Contained in — Constraint

Text field that specifies the context of a Constraint Function.
Contained in — ConstraintFunc

Enumeration that givesthe default datatype of aFieldAttr. The possible
values are String, Integer, and Double.

Default value — Sring
Contained in — FieldAttr

Test field that specifies the decorator component to be used
to display the given object in the target environment. Example:
MGA. Decor at or . Met aDecor at or

Contained in — Model, Atom, Reference, Set

A boolean checkbox that describes the default value of a BooleanAttr.
Default value — Unchecked
Contained in — BooleanAttr

Text field that gives the default parameters of the constraint.
Contained in — Constraint

Text field that gives the displayed name of the menu item in the Menu
items attribute to be used as the default value of the menu.

Contained in — EnumAttr
Text field that is displayed when the constraint is violated.
Contained in — Constraint

String value that gives the displayed name of a Folder or Aspect. This
will be the value that is shown in the model browser, or aspect tab
(respectively). A blank value will result in the displayed name being
equal to the name of the class.

Contained in — Folder, Aspect
Text field that gives the default value of the FieldAttr.
Contained in — FieldAttr

Text field (multiple lines) that allows a user to enter data to be
transferred directly into the XML file. This is a highly specific text

67

GME Manua and User Guide

Global scope

Icon

In root folder

Line end

Line start

Linetype

Number of lines

area, and is normally not used. The occasions for using this area is to
configure portions of the paradigm that the M etamodeling environment
has not yet been devel oped to configure.

Contained in — FCO, Atom, Model, Set, Connection,
Reference

A boolean checkbox that refers to the definition scope of the attribute.
In most cases, it is sufficient to leave this attribute in its default state
(true). The reason for giving the option of scopeisto be able to include
attributes with the same names in different FCO-s, and have those
attributes be different. In this case, it is necessary to include local
scoping (i.e. remove the global scope), or the paradigm file will be
ambiguous.

Default value — Checked
Contained in — EnumAttr, BooleanAttr, FieldAttr

Text field that gives the name of afile to be displayed as the icon for
this object.

Contained in — Atom, Set, Reference, Model

Boolean checkbox that determines whether or not this object can belong
in theroot folder. Note that if an object cannot belong to the root folder,
then it must belong to aFolder or Model (somewhere in its containment
hierarchy) that can belong to the root folder.

Default value — Checked
Contained in — Folder, Model, Atom, Set, Reference

Enumeration of the possible end types of aline. Possible types are Butt
(no specia end), Arrow, and Diamond.

Default value — Butt
Contained in — Connection

Enumeration of the possible start types of aline. Possibletypes are Butt
(no specia end), Arrow, and Diamond.

Default value — Butt
Contained in — Connection

Enumeration of the possible types of a line. Possible types are Solid,
and Dash.

Default value — Solid
Contained in — Connection
Integer field that gives the number of linesto display for this FieldAttr.

Default value—1

68

GME Manua and User Guide

Menu items

Name position

Object isaport

On...

Contained in — FieldAttr

A text field that lists the items in an EnumAttr. There are two modes
for thistext field (which can also be called atext box, because it hasthe
ability for multiple lines).

In basic mode, the field items are separated by carriage returns, in the
order in which they should be listed in the menu. In this case, the text
used as the menu will be the same as value of the menu.

In the expanded mode, it is possible to list the definite values to be used
for the menu elements. This is done by separating the displayed value
from the actual value with acomma(,).

Example:

Figure 33. Sample enumer ated attribute specification

NamePosition

Attributes | Preferences | Properties

Prompt Name position

DefaultMenultem South

Menu items: Noith, O
Martheast, 1
East, 2
Southeast, 3
South, 4
Southwest, 5
West 6,
Mortbwest, 7

Note that the displayed and actual value need not be of the same basic
type (character, integer, float, etc.) because it will all be converted to
text.

Contained in — EnumAttr

Enumeration that lists the nine places that the name of an FCO can be
displayed.

Default value — South
Contained in — Atom, Set, Reference, Model

Boolean checkbox that determines whether or not the FCO will be
viewable as a port within the model.

Default value — Unchecked
Contained in — Containment

The Constraint has many attributes which are similar, except for the
type of event to which they refer. They are all boolean checkboxes
that give the constraint manager the authority to check this constraint
when certain events occur (e.g. Model creation/del etion, connecting two

69

GME Manua and User Guide

objects). For more information on the semantics of these events, please
refer to Section 10, “Constraint Manager”.

* On close model

e On new child

* Ondelete

* On disconnect

* On connect

* Onderive

* On change property

¢ On change assoc.

* On exclude from set

e Onincludein set

¢ Onmove

* On create

¢ On change attribute

* Onlost child

e Onrefer

e Onunrefer
Default value — Unchecked
Contained in — Constraint

Port icon Text field that gives the name of afile to be displayed as the port icon
for this object. If no entry is made for thisfield, but the object is a port,
then the normal icon will be scaled to port size.

Contained in — Atom, Set, Reference, Model

Priority (1=High) Enumeration of the possible levels of priority of this constraint. For
more information on constraint priority, refer to Section 10, “ Constraint
Manager”.

Contained in — Constraint

Prompt A text field trandated into the prompt of an attribute. It is in exact
WY SIWYG format (i.e.no ‘.’ or ‘-* is appended to the end).

Contained in — EnumAttr, BooleanAttr, FieldAttr
Return type Text field that specifies the type a Constraint Function returns.

Contained in — ConstraintFunc

70

GME Manua and User Guide

Rolename Text field that gives the rolename that the FCO will have in the
Connection. There are two different possible default values, ‘sr¢’ and
‘dst’, depending upon whether the connection was made from the
Connector to the FCO, or the FCO to the Connector.
Default value — src or dst

Contained in - SourceToConnector,
Connector ToSource

Stereotype Enumeration field that specifies how a Constraint Function can be
caled.

* attribute

* method
Default value — method
Contained in — ConstraintFunc

Type displayed A boolean checkbox that decides whether the name of Type or Subtype
of an Instance has to be displayed or not.

Default value — Unchecked
Contained in — FCO, Atom, Model, Set
Typeinfo displayed A boolean checkbox that decides whether ‘T’, ‘S or ‘I’ letter is
displayed according to that the concrete model is Type, Subtype or
Instance. A model does not have any sign if it isnot in type inheritance.
Default value — Checked
Contained in —Model

Version information A text field translated into a comment within the paradigm output file.
The user isresponsible for updating this field.

Contained in — Paradigm
Viewable A boolean checkbox that decides whether or not to display the attribute
in the paradigm. If the state is unchecked, then the attribute will be
defined in the metamodel, but not viewable in any Aspect (regardless of
the properties of the FCO. Thisis useful if you want to store attributes
outside the user's knowledge.
Default value — Checked

Contained in — EnumAttr, BooleanAttr, FieldAttr

8.5. Metamodeling Semantics

The following table displays the representation of the concepts of GME, and how they translate
semantically into core MGA concepts.

71

GME Manua and User Guide

Tableb.

First Class Objects (FCOs)

«model» A class The classis an MGA model

«atom» A class Theclassisan MGA atom

«connection» A class The class is an MGA connection
(must be used as an Association
Class)

«reference» A class Theclassisan MGA reference

«Set» A class Theclassisan MGA set

«FCO» A class (abstract only) The classis abase type of another
FCO

Associations

Containment An association (with diamond)| The «model» contains the

between a «model» and an FCO

specified FCO as a part.

AssociationClass

An association between a
«connection» (class) and an
Association Connector (models
the connection join).

The «connection» contains all of
the roles that the Association
Connection has.

ReferTo

A directed association between
a «reference» and a «model»,
«atomy, or «reference»

The instances of the «reference»
class will refer to the instances
of the «model», «atom», or
«reference» class.

Association Classes

«connection»

An association between a src/dst
pair (or an n-ary connection, inthe
general sense) that is attributed by
a «connection» class

The «connection» class represents
the src/dst par(s) as an
MGA connection. [note: the
«connection» is an FCQ]

Containment

FolderContainment

An association (with diamond)
between a «folder» and a «folder»

The «folder» contains 0..n of the
associated «folder» asalegal sub-
folder

Containment An association (with diamond)|The «model» contains the
between a «<model» and an FCO |associated FCO which plays a
specified role
SetMembership An association (with diamond)|The «set» may contain the
between a «set» and an FCO associated FCO.
HasAspect An association between a|The «model» contains the
«model» and an «aspect» specified «aspect».
Cardinality
(none) An integer attribute for each end| Thisend of the association hasthe
of the association cardinality specified [unspecified
cardinality is assumed to be 1]
Various
«aspect» A class The class denotes an MGA aspect

72

GME Manua and User Guide

Various

«folder» A class The class denotes an MGA folder
(none) The model representsa Project | An MGA Project

Inheritance

(none) UML Inheritance The class inherits from a

superclass. An attribute of the
destination is the rolename to be
used for the child class.

Groups of parts

Connector Atom, reference, (port),| The part may play a role in a
(reference port) connection

FCO Model, atom, reference,| The part is afirst class object
connection, set

Referenceable Model, atom, reference The part may be referenced

73

GME Manua and User Guide

9. High-Level Component Interface

The process of accessing GME models and generating useful information, e.g. configuration files for
COT S software, database schema, input for adiscrete-event simulator, or even source code, is called model
interpretation. GME provides two interfaces to support model interpretation. The first one is a COM
interface that lets the user write these components in any language that supports COM, e.g. C++, Visua
Basic or Java. The COM interface provides the means to access and modify the models, their attributes
and connectivity. In short, the user can do everything that can be done using the GUI of the GME. There
are two higher-level C++ interfaces that take care of alot of lower level issues and makes component
writing much easier. These high-level C++ component interfaces are the focus of this chapter. The first
section discusses thefirst release of Builder Object Network, the second el aborates the more sophisticated
version of BON with the Meta Object Network.

Interpreters are typical, but not the only components that can be created using this technology. The other
types are plug-ins, i.e. components that provide some useful additional functionality to ease working in
GME. These components are very similar to interpreters, though they are paradigm-independent. For
example, a plug-in can be developed to search or locate objects based on some user-defined criteria, like
the value of an attribute.

Thethird types of these components are add-ons, i.e. componentsthat can react to GM E-events sent by the
COM Mga-Layer. These components are very useful to make GME a run-time executional environment
or to write more sophisticated paradigm dependent or independent extensions.

9.1. Builder Object Network version 1.0
9.1.1. What Does the BON Do?

The component interface is implemented on the top of the COM interface. When the user initiates
model interpretation, the component interface creates the so-called Builder Object Network (BON). The
builder object network mirrors the structure of the models: each model, atom, reference, connection,
etc. has a corresponding builder object. This way the interface shields the user from the lower level
details of the COM interface and provides support for easy traversal of the models along either the
containment hierarchy, the connections, or the references. The builder classes provide general-purpose
functionality. The builder objects are instances of these predefined paradigm independent classes. For
simple paradigm-specific or any kind of paradigm independent components, they are all the user needs.
For more complicated components, the builder classes can be extended with inheritance. By using a pair
of supplied macros, the user can have the component interface instantiate these paradigm-specific classes
instead of the built-in ones. The builder object network will have the functionality provided by the general-
purpose interface extended by the functionality the component writer needs.

9.1.2. Component Interface Entry Point

TheBuilder.hfilein component source package definesthe high-level C++ component interface. The entry
point of the component is defined in the Component.h in the appropriate subdirectory of the components
directory. Here isthefile at the start of the component writing process:

#i f ndef GMVE_|I NTERPRETER_H
#def i ne GVE_|I NTERPRETER_H

#i ncl ude "Buil der. h"

#def i ne NEW BON_| NVOKE
/1 #defi ne DEPRECATED_BON_| NVOKE_| MPLEMENTED

cl ass CConponent {
publi c:

74

GME Manua and User Guide

CConponent () : focusfolder(NULL) { ; }
CBui | der Fol der *focusf ol der;
CBui | der Fol der Li st sel ect edf ol ders
voi d | nvokeEx(CBui | der &buil der, CBui | der Obj ect *focus
CBui | der (nj ect Li st &sel ected, |ong param
/1 void I nvoke(CBuil der &builder, CBuil derojectlList &sel ected, |ong param

#endif // whole file

Before GME version 1.2 this used to be simpler, but not as powerful. The Invoke function of the
CComponent class used to be the entry point of the component. When the user initiatesinterpretation, first
the builder object network is created then the above function iscalled. Thefirst two parametersprovidetwo
ways of traversing the builder object network. The user can accessthe list of folders through the CBuilder
instance. Each folder provides a list of builder objects corresponding to the root models and subfolders.
Any builder can then be access through recursive traversal of the children of model builders.

The CBui | der Model Li st contains the builders corresponding to the models selected at the time
interpretation was started. If the component was started through the main window (either through the
toolbar or the File menu) then the list contains one model builder, the one corresponding to the active
window. If the interpretation was started through a context menu (i.e. right click) then the list contains
itemsfor all the selected objects in the given window. If the interpretation was started through the context
menu of the Model Browser, then the list contains the builders for the selected modelsin the browser.

Using this list parameter of the Invoke function makes it possible to start the interpretation at models the
user selects. The long parameter is unused at this point.

Inversion 1.2, | nvoke has been replaced by | nvokeEx, which clearly separates the focus object from
the selected objects. (Depending on the invocation method both of these parameters may be empty.)
To maintain compatibility with existing components, the following preprocessor constants have been
designated for inclusion in the Component.h file:

* NEW BON | NVOKE: if #def i ned in Conrponent . h, indicates that the new BON is being used. If
it is not defined (e.g. if the Conponent . h from an old BON is being used) the framework worksin
compatibility mode.

o DEPRECATED BON_I NVOKE_| MPLEMENTED: In most cases, only the
CConponent : : | nvokeEx needs to be implemented by the component programmer, and the
| mgaConponent : : | nvoke() method of the original COM interface aso results in a cal to
I nvokeEx. If, however the user prefersto leavethe existing Conponent : : | nvoke() methodtobe
called in this case, the #define of this constant enables thismode. | nvokeEx() must beimplemented
anyway (as NEW BON_| NVOKE is till defined).

e | MPLEMENT_OLD_| NTERFACE_ONLY: this constant can be included in old Conponent . h files
only to fully disable support for the | MyjaConponent Ex COM interface (GME invokes to the old
interfaceif the | nvokeEx is not supported). Using this constant is generally not recommended.

If none of the above constants are defined, the BON framework interface is compatible with the old
Ccomponent classes. Consequently, older BON code (Component.h and Component.cpp) can replace
the corresponding skeleton/example files provided in the new BON. When using such a component,
however, a warning is message is displayed to remind users to upgrade the component code to one
fully compliant with the new BON. Although it is strongly recommended to update the component code
(i.e converting CConponent : : | nvoke to CConponent : : | nvokeEx() , thiswarning can also be
suppressed by disabling the new COM component interface through the inclusion of the #def i ne
| MPLEMENT_OLD_| NTERFACE_ONLY definition into the old Component.h file.

Plug-Ins are paradigm-independent components. The example Noname plug-in displays a message. The
implementation isin the conponent . cpp file shown below:

75

GME Manua and User Guide

#i ncl ude "stdafx.h"
#i ncl ude " Conponent. h"

voi d CConponent:: | nvokeEx(CBuil der &buil der, CBuil der Obj ect *focus,
CBui | der (nj ect Li st &sel ected, |ong param
{
Af xMessageBox(" Pl ug-1n Sanple");
}

Theconponent . h and conmrponent . cpp filesare the onesthat the component writer needs to expand
to implement the desired functionality.

9.1.3. Component Interface

Figure 34. Class diagram of Builder Object Network

‘ CBuilderObject ‘

‘ CBuilder ‘ I\ ‘ CBuilderFolder ‘
// \\
| \ | |
‘ CBuilderModel ‘ ‘ CBuilderAtom ‘ ‘ CBuilderModelReference ‘ ‘ CBuilderAtomReference
‘ CBuilderConnection ‘ ‘ CBuilderSet ‘ ‘ CBuilderReferencePort ‘

The simple class structure of the component interface is shown below. Note that each classis aderivative
of the standard MFC CObject class.

Asnoted before, the singleinstance of the CBui | der classprovidesatop level entry point into the builder
object network. It provides access to the model folders and supplies the name of the current project. The
public interface of the CBui | der classis shown below.

class CBuilder : public Coject {

publi c:
CBui | der Fol der *Get Root Fol der() const;
const CBui |l der Fol der Li st *Get Fol ders() const;
CBui | der Fol der *Get Fol der (CString &iane) const;
CString GetProjectNanme() const;

}s

The CBui | der Fol der class provides access to the root models of the given folder. It can also be used
to create new root models.

cl ass CBuil der Fol der : public CObject {

publi c:
const CString& Get Name() const;
const CBui |l der Mbdel Li st *Get Root Model s() const;
const CBui | der Fol der Li st *Get SubFol ders() const
CBui | der Model *Get Root Mbdel (CString &name) const;
CBui | der Model *Cr eat eNewibdel (CString ki ndNane) ;

}s

The CBui | der Qbj ect is the base class for severa other classes. It provides a set of common
functionality for models, atoms, references, sets and connections. Some of the functions need some
explanation.

76

GME Manua and User Guide

The Get Attri but e() functions return true when their successfully retrieved the value of attribute
whose name was supplied in the name argument. If thetype of theval argument does not match the attribute
or the wrong name was provided, the function return false. For field and page attributes, the type matches
that of specified in the meta, for menus, it isa CString and for toggle switches, it is abool.

TheGet xxxAt t ri but eNanmes functionsreturn thelist of names of attributesthe given object has. This
helps writing paradigm-independent components (plug-ins).

The Get Ref er encedBy function returns the list of references that refer to the given object (renamed
inv1.2 from Get Ref er ences).

The GetlnConnections (GetQutConnection) functions return the list of incoming
(outgoing) connections from the given object. The string argument specifies the
name of the connection kind as specified by the modeling paradigm. The
Get | nConnect edObj ect s (Get Qut Connect edObj ect s) functions return a list of objects
instead. The Get Di r ect | nConnect i ons (Get Di r ect Qut Connect i ons) build atree. The root
of thetree isthe given object, the edges of the tree are the given kind of connections. The function returns
theleaf nodes. Basically these functionsfind pathsto (from) the given object without the component writer
having to write the traversal code.

TheTr aver seChi | dr en virtual functions provide awaysto traverse the builder object network along
the containment hierarchy. The implementation provided does not do anything, the component writer can
override it to implement the necessary functionality. Aswell see later, the CBui | der Mbdel class does
override this function. It enumerates al of its children and callstheir Tr aver se method.

cl ass CBuil derObject : public CObject {
const CString& Get Name();
const bool SetNane(CString newnane);

voi d Cet NanmePat h(CString &nanmePat h) const
const CString& Get Ki ndNanme() const;
const CString& GetPart Name() const;

const CBuil der Mbdel *GetParent () const;
CBui | der Fol der* Cet Fol der () const;

bool GetlLocation(CString &aspect Name, CRect &l oc);

bool SetlLocation(CString aspect Name, CPoi nt | oc);

voi d Di splayError(CString &sg) const;

voi d Di spl ayError(char *msg) const;

voi d Di spl ayWarni ng(CString &rsg) const;

voi d Di spl ayWar ni ng(char *nsg) const;

bool GetAttribute(CString &iane, CString &al) const;

bool GetAttribute(char *name, CString &val) const;

bool GetAttribute(CString &iane,int &al) const;

bool GetAttribute(char *name,int &val) const;

bool GetAttribute(CString &nane, bool &val) const;

bool GetAttribute(char *nane, bool &val) const;

bool SetAttribute(CString &ame, CString &val);

bool SetAttribute(CString &ane, int val);

bool SetAttribute(CString &ame, bool val);

void CetStrAttributeNames(CStringList & ist) const;

void CetlntAttributeNames(CStringList & ist) const;

voi d Cet Bool AttributeNanmes(CStringList & ist) const;

voi d Cet Ref erencedBy(CBui | der Obj ectLi st & ist) const;

const CBui |l der Connecti onLi st *Get | nConnections(CString &nane) const;
const CBui |l der Connecti onLi st *Get | nConnections(char *nanme) const;
const CBui |l der Connecti onLi st *Get Qut Connecti ons(CString nane)const;
const CBui |l der Connecti onLi st *Get Qut Connecti ons(char *name) const;

bool Getl nConnect edObj ects(const CString &ane, CBuil der ObjectList &ist);
bool Getl nConnectedObj ect s(const char *name, CBuil der Qbj ectList & ist);
bool Get Qut Connect edOhj ect s(const CString &name, Buil der ObjectList &ist);

7

GME Manua and User Guide

bool Get Qut Connect edOhj ect s(const char *nane, CBuil der CbjectList & ist);

bool GetDirectlnConnections(CString &ame, CBuil der ObjectList &ist);
bool GetDirectlnConnections(char *nane, CBuil derbjectList & ist);
bool GetDirectQut Connections(CString &ame, CBuil der Obj ectList & ist);
bool GetDirect Qut Connections(char *nanme, CBuil der ObjectList &ist);

virtual void TraverseChildren(void *pointer = 0);

3

The CBui | der Model class is the most important class in the component interface, simply because
models are the central objects in the GME. They contain other objects, connections, sets, they have
aspects etc. The Get Chi | dr en function returns alist of al children, i.e. al objects the model contains
(models, atoms, sets, references and connections). The Get Model s method returns the list of contained
models. If a role name is supplied then only the specified part list is returned. The Get At onrs,
CGet At onRef er ences and Get Mbdel Ref er ences, Get Set s() functions work the same way
except that a part name must be supplied to them. The Get Connect i ons method return the list of the
kind of connections that was requested. These are the connections that are visible inside the given model.

The Get Aspect Nanes function return the list of names of aspects the current model has. Thishelpsin
writing paradigm-independent components.

Children can be created with the appropriate creation functions. Similarly, connections can be constructed
by specifying their kind and the source and destination objects. Please, see the description of the
CBuilderConnection class for a detailed description of connections.

TheTr aver seMbdel s functionissimilar to the Tr aver seChi | dr en but it only traverses models.

cl ass CBuil derModel : public CBuil der Object {
publi c:
const CBuil der Obj ect Li st *Get Chil dren() const;
const CBui | der Model Li st *Get Model s() const;
const CBui | der Model Li st *Get Model s(CString partName) const;
const CBuil der At onlLi st *Get At oms(CString partName) const;
const CBui | der Model Ref erencelLi st *Get Model Ref erences(CString refPart Name) const;
const CBui | der At onRef er encelLi st *Get At onRef erences(CString refPartName) const;
const CBui | der Connecti onLi st *Get Connecti ons(CString name) const;
const CBuil der SetLi st *GetSets(CString name) const;

voi d Get Aspect Nanes(CStringList &ist);

CBui | der Model *Creat eNewivbdel (CString part Nane);

CBui | der Atom *Creat eNewAt on{CString part Nane);

CBui | der Mbdel Ref er ence *Creat eNewivbdel Ref erence(CString ref Part Nane, CBuil der Obj ect *
ref To);

CBui | der At onRef er ence *Cr eat eNewAt onRef erence(CString ref Part Nane, CBuil der Obj ect *
ref To);

CBui | der Set *Creat eNewSet (CString part Nane);

CBui | der Connecti on *Creat eNewConnecti on(CString connNane, CBuil der Object *src,
CBui | der Obj ect *dst);

virtual void TraverseMdel s(void *pointer = 0);
virtual void TraverseChildren(void *pointer = 0);

H
The CBui | der At omclass does not provide any new public methods.

cl ass CBuil der Atom: public CBuil der Qbject {
public:
H

The CBui | der At onRef er ence class providesthe Get Ref er r ed function that returns the atom (or
atom reference) referred to by the given reference.

cl ass CBuil der At omRef erence : public CBuil der Cbj ect {

78

GME Manua and User Guide

const CBuil der Obj ect *Get Referred() const;
H

Even though the GME dealswith ports of models (since models cannot be connected directly, these arethe
objects that can be), the component interface avoids using ports for the sake simplicity. However, model
references mandate the introduction of a new kind of object, model reference ports. A model reference
contains alist of port objects. The Get Oamner method of the CBui | der Ref er encePor t classreturn
the model reference containing the given port. The Get At ommethod returns the atom that corresponds
to the port of the model that the model reference port represents.

cl ass CBuil der ReferencePort : public CBuil der Object {
publi c:

const CBui | der Model Ref erence *Get Oaner () const;
const CBuil der At om *Get At om() const;
b

The CBui | der Mbdel Ref er ence class provides the Get Ref er ed function that returns the model
(or model reference) referred to by the given reference. The Get Ref er eePort s return the list of
CBui | der Ref erencePorts.

cl ass CBui |l der Model Ref erence : public CBuil der Cbj ect {
const CBui |l der Ref erencePort Li st &Cet Ref ereePorts() const;
const CBuil der Obj ect *Get Referred() const;

b

A CBui | der Connect i on instance describes a relation among three objects. The owner is the model
that contains the given connection (i.e. the connection isvisiblein that model). The source (destination) is
alwaysan atom or areference port. If itisan atomthenitiseither contained by the owner, or it corresponds
to aport of amodel contained by the owner. So, in case of atoms, either the source (destination) or its parent
isachild of the owner. In case of areference port, its owner must be achild of the owner of the connection.

cl ass CBuil der Connection : public CBuil der Qbject {
publi c:
CBui | der Model *Get Omner () const;
CBui | der Onj ect *Get Source() const;
CBui | der Obj ect *Get Destination() const;
H

The CBui | der Set class member function provide straightforward access to the different components
of sets.

class CBuilderSet : public CBuil derject {
publi c:

const CBui | der Model *Get Omner() const;

const CBui | der Obj ect Li st *Get Menbers() const;

bool AddMenber (CBui | der Obj ect *part);
bool RenpbveMenber (CBui | der Obj ect *part);

b
9.1.4. Example

The following simple paradigm independent interpreter displays a message box for each model in the
project. For the sake of simplicity, it assumes that there is no folder hierarchy in the given project. The
conponent . cpp fileis shown below.

#i ncl ude "stdafx.h"
#i ncl ude " Conponent. h"

voi d CConponent:: | nvokeEx(CBuil der &buil der, CBuil der Obj ect *focus,
CBui | der (nj ect Li st &sel ected, |ong param
{
const CBui |l der Fol derLi st *folds = buil der. Get Fol ders();
PCsSI TI ON f Pos = fol ds- >CGet HeadPosi tion();

79

GME Manua and User Guide

whi | e(f Pos) {
CBui | der Fol der *fold = fol ds- >Get Next (f Pos) ;
const CBuil der Mbdel Li st *roots = fol d- >Get Root Model s();
PCSI TI ON r oot Pos = roots->Get HeadPosi tion();
whi | e(r oot Pos)
ScanMbdel s(r oot s- >Get Next (r oot Pos), f ol d- >CGet Nane()) ;

}
}

voi d CConponent:: ScanMbdel s(CBui | der Model *nodel, CString fName)

Af xMessageBox(nodel - >Get Nane() + " nodel found in the " +
fName + " folder");

const CBui |l der Mbdel Li st *nodel s = nodel - >Get Model s() ;
PCsSI TI ON pos = nodel s- >CGet HeadPosi tion();
whi | e(pos)
ScanMbdel s(nodel s- >Get Next (pos), f Nane) ;
}

9.1.5. Extending the Component Interface

The previous example used the built-in classes only. The component writer can extend the component
interface by her own classes. In order for the interface to be able to create the builder object network
instantiating the new added classes before the user defined interpretation actually begins, a pair of macros
must be used.

The derived class declaration must use one of the DECL ARE macros. Theimplementation must include the
appropriate | MPLEMENT macro. Thereisapair of macrosfor models, atoms, model- and atom references,
connections and sets. The following list describes their generic form.

DECLARE_CUSTOMMODEL (<CLASS>, <BASE CLASS>)
DECLARE_CUSTOMMODEL REF(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOVATOM <CLASS>, <BASE CLASS>)
DECLARE_CUSTOVATOVREF(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOMCONNECT! ON(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOMSET(<CLASS>, <BASE CLASS>)

| MPLEMENT_CUSTOMMODEL (<CLASS>, <BASE CLASS>, <NAMES>)

| MPLEMENT_ CUSTOMMODEL REF(<CLASS>, <BASE CLASS>, <NAMES>)

| MPLEMENT_CUSTOVATOM <CLASS>, <BASE CLASS>, <NAMES>)

| MPLEMENT_CUSTOVATOVREF(<CLASS>, <BASE CLASS>, <NAMES>)

| MPLEMENT_CUSTOMCONNECT! ON(<CLASS>, <BASE CLASS>, <NAMES>)
| MPLEMENT_CUSTOVMSET(<CLASS>, <BASE CLASS>, <NAMES>)

Here, the <CLASS> is the name of the new class, while the <BASE _CLASS> is the name of one of the
appropriate built-in class or a user-derived class. (The user can create abstract base classes as discussed
later.) The <NAMES> argument lists the names of the kinds of models the given class will be associated
with. It can be a single name or a comma separated list. The whole names string must be encompassed
by double quotes.

For example, if we have a"Compound" model in our paradigm, we can create a builder class for it the
following way.
/1 Component. h
cl ass CConpoundBui | der : public CBuil der Model
DECLARE_CUSTOWMODEL (CConpoundBui | der, CBui | der Mbdel)
publi c:
virtual void Initialize();

vi rtual ~CConmpoundBui l der();

/'l nore decl arations

80

GME Manua and User Guide

H
/' Conponent . cpp
| MPLEMENT_CUSTOVMCDEL (CConpoundBui | der, CBui | der Model , " Conpound")
voi d CConpoundBui l der::Initialize()
/1 code that otherw se would go into a constructor

CBui | der Model :: Initialize();
}

CConpoundBui | der: : ~CConpoundBui | der ()

/'l the destructor

}

/'l nore code

The macros create a constructor and a Create function in order for a factory object to be able to
create instances of the given class. Do not define your own constructors, use the I ni ti al i ze()
function instead. Y ou have to call the base class implementation. These macros call the standard MFC
DECLARE_DYNCREATE and | MPLEMENT DYNCREATEmMacros.

If you want to define abstract base classes that are not associated with any of your models, use the
appropriate macro pair from the list below. Note that the <NAMES> argument is missing because there
isno need for it.

DECLARE_CUSTOMMODEL BASE(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOVMODEL REFBASE(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOVATOVBASE(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOVATOVREFBASE(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOMCONNECTI ONBASE(<CLASS>, <BASE CLASS>)
DECLARE_CUSTOMSETBASE(<CLASS>, <BASE CLASS>)

| MPLEMENT_CUSTOMMODEL BASE(<CLASS>, <BASE CLASS>)

| MPLEMENT_CUSTOMMODEL REFBASE(<CLASS>, <BASE CLASS>)

| MPLEMENT_CUSTOVATOMBASE(<CLASS>, <BASE CLASS>)

| MPLEMENT_CUSTOVATOVREFBASE(<CLASS>, <BASE CLASS>)

| MPLEMENT_CUSTOMCONNECT| ONBASE(<CLASS>, <BASE CLASS>)
| MPLEMENT_CUSTOMSETBASE(<CLASS>, <BASE CLASS>)

For casting, use the BUI LDER_CAST(CLASS, PTR) macro for casting a builder class pointer to its
derived custom builder object pointer.

9.1.6. Example

Let's assume that our modeling paradigm has a model kind called Compound. Let's write a component
that implements an agorithm similar to the previous example. In this case, we'll scan only the Compound
models. Again, the folder hierarchy is not considered. Hereisthe Conponent . h file:

#i f ndef GMVE_|I NTERPRETER_H
#defi ne GVE_|I NTERPRETER_H

#i ncl ude "Buil der. h"

#def i ne NEW BON_| NVOKE
/1 #defi ne DEPRECATED_BON_| NVOKE_| MPLEMENTED

cl ass CConponent {
publi c:
CConponent () : focusfolder(NULL) { ; }
CBui | der Fol der *focusf ol der;
CBui | der Fol der Li st sel ect edf ol ders;
voi d | nvokeEx(CBui | der &buil der, CBui | der Obj ect *focus,

81

GME Manua and User Guide

CBui | der (nj ect Li st &sel ected, |ong param;
H

cl ass CConpoundBui | der : public CBuil der Model

DECLARE_CUSTOWMMODEL (CConpoundBui | der, CBui | der Mbdel)
publi c:
voi d Scan(CsString fol dNane);

b
#endif // whole file

Theconponent . cpp fileisshown below.

#i ncl ude "stdafx. h"
#i ncl ude " Conponent. h"

voi d CConponent: : | nvokeEx(CBui | der &bui | der, CBui | der Obj ect *focus,
CBui | der Obj ect Li st &sel ected, |ong paran

{
const CBui |l der Fol derLi st *folds = buil der. Get Fol ders();

POSI TI ON f ol dPos = fol ds->Get HeadPosi tion();
whi | e(fol dPos) {
CBui | der Fol der *fold = fol ds->Get Next (f ol dPos);
const CBui | der Model Li st *roots = fol d->Get Root Model s();
POSI TI ON r oot Pos = root s->Cet HeadPosi tion();
whi | e(root Pos) {
CBui | der Model *root = roots->Get Next (root Pos);
i f(root->lsKi ndOf (RUNTI ME_CLASS(CConpoundBui | der)))
BUI LDER_CAST(CConpoundBui | der, r oot) - >Scan(f ol d- >Get Nane());
}
}
}

| MPLEMENT_ CUSTOMMODEL (CConpoundBui | der, CBui | der Mbdel , " Conpound")

voi d CConpoundBui | der:: Scan(CString fol dNane)

{
Af xMessageBox(Get Nane() + " nodel found in " + fol dName +

" folder");

const CBui | der Model Li st *nodel s = Get Model s(" CompoundParts");
POSI TI ON pos = nodel s->CGet HeadPosi tion();
whi | e(pos)
BUI LDER_CAST(CConpoundBui | der, nodel s- >Get Next (pos)) - >Scan(f ol dNan®) ;

}
9.2. Meta Object Network

9.2.1. What is MON?

Using the previous version of BON the users experienced that lots of implementation issues could be
solved more simply if they had a smple and well-defined interface to the metamodel of their domains.
The MON makes the paradigm available at the time of writing components. All information covered by
the metamodel are accessible (from the aspect and valid connections between objects to constraints).

The benefits are obvious:

* MON is the key to write paradigm-independent interpreters or plug-ins to GME avoiding to get into
the details of COM.

 For auser the definition of a GME metamodel sometimes could be very difficult to understand. With
MON GME devel opers and interpreter writers can examine the wellness of the paradigm easily and may
get more familiar with rules how a GME paradigm is specified and interpreted.

82

GME Manua and User Guide

* It made possible to implement BON2 on the base of well-specified interface. BON2 is developed on
the basis of MON and it depends tightly to the classes defined in MON, as you can see in the latter
subsections.

» References to a metaobject can be done with the metaobject itself eliminating the mistakes came from
misspelled names for example.

Whenever GME or the users execute a component, the paradigm is aways accessible to the component
via MON. The meta object network is read-only, and can be altered indirectly with reinterpretation only
(or modifying manually the .xmp file containing the interpreted metamodel).

The meta object network is created during the initialization time of the components and it is already
readable when the user's initialization code runs.

Note

The time of the creation of the specific MON may be a couple of seconds depending of the
complexity of the paradigm.

9.2.2. Basic MON Classes

The next figure shows clearly the inheritance chain between the core classes of MON.

Figure 35. MON classes, which have corresponding COM interfaces

‘ Project ‘ | MataObject ‘ ‘ RegistryNode ‘ | Constraint |

| Attribute | | Aspect ‘ | Object | ‘ Containment | _‘ ContainmentPart |

I O N B

Met aCbj ect is the base class for all classes whose instances have unique identifier
(Met aRef er encel D). ThisMON class correspondsto the | MpaMet aBase COM interface which has
common meta properties (identifier - mentioned above, name — string identifier, displayed name).

Among the basic classes there are only three which do not have ancestors:

» Proj ect correspondsto the | MpaMet aPr oj ect which isthe root of the object network. Because
it contains directly or indirectly all metaobjects (i.e. all MON classes have the method pr oj ect ()
to access the project), Project offers methods with which the user can obtain al instances of
a specific metakind or a meta-relation and he can find the Met aCbj ect correspondent to a
Met aRef er encel D, to the name of ametakind or to name of an Aspect.

* Regi st ryNode corresponds to the | MpaMet aRegNode COM interface which is smply a name-
value pair with the extension that the nodes are organized into atree called Registry. A Met aCbj ect

83

GME Manua and User Guide

aways has this Registry, even it is absolutely empty. For the sake of clarity the Met aCbj ect’s
registry() returns adummy Regi st r yNode object from which all ‘root’ nodes may be accessed.

e Constrai nt isassociated with classObj ect . Obj ect correspondsto metakind, i.e. Fol der , FCO
and descendants of FCO. Thisclassisintroduced only by MON, it does not have the appropriate COM
interface.

The unmentioned classes will be discussed in the following subsections.

9.2.3. Meta-Kinds in MON

In this subsection the meta-kinds and their specific relationships are discussed. These meta-kinds are the
following: Folder and FCO which is the base of Atom, Model, Connection, Set and Reference. In the
context of UML these meta-kinds are stereotypes denoting what kind of relationshipsthey can take part in.

These are shown in the next figure without the meta-kind Atom, because this concept means a simple,
undividable entity (classin UML) which does not have any special and additional propertiesthat FCO has.

Folder is similar to package or namespace but comparing with the package concept in UML, in the same
paradigm more than one Folder may exist (they can contain different kinds). Because of this fact, each
folder can have different semanticsand they are considered askinds and must have unique nameswith fcos.

In GME Model is the most important concept, because it specifies with Containment the hierarchical
structure of the objectsin a GME project. Asit is shown in the figure, Containment is a Model-FCO pair
with a unique name in the context of the Model. In contrast to UML, regarding the relationships instead
of class GME deals with Containment which corresponds to the containment role and | MyaMet aRol e
COM interface. With this concept more sophisticated paradigms may be created without further constraints
(e.g. in aclass only that student may take part in a golf club whose all grades are ‘A’ — Class ~ Model,
Student ~ FCO, Excellent ~ Containment GolfClub ~ Set) That is why Set and Reference are associated
with Containment instead of FCO. These associations similarly to FolderContainment are blue colored
denoting that they are introduced only in MON.

Figure 36. MON classes with their specific relations

'
[N

s FolderContainment
0.

0.

FCO

_ ReferenceAssociation
0.
ConnectionSpecification
- Set [0
ConnectionRole _ 1 _

ConnectionEnd

SetMembership

0.

Containment

GME Manua and User Guide

Connection is more complicated than Reference or a Set. The meaning of the classes is described well
with a bidirectional connection in whose case a connection has two specifications regarding the two
directions how two containment (usually fcos with their all containments) can be connected. In the
metamodeling environment only binary connections can be created with src and dst ConnectionRole.

Except of Connection and Containment all classes are blue-colored because COM objects cannot be
assigned to the instances unambiguously.

9.2.4. Specific GME Concepts

Via MON al information related with aspects can be obtained. ModelInAspect association describes
which Model in which Aspect can be opened in the model editor. ContainmentPart, which corresponds to
| MpaMet aPart COM interface, tellsthe user which containment rolesarevisiblein the particul ar aspect.

Figure 37. Relationships of Attributes, Aspects, RegistryNodes and Constraints

ContainmentPart

S - []
? Containment
[MetaQbject

Constraint
AttributeAggregation

rI

1.0

FobAIATbE
e

Figure 38. How the M etaProject relatesto other classes

L

mt

0. 0. 0. 0.

‘ MetaObject | ‘ ModellnAspect ‘ ‘ AttributeAggregation | | FolderContainment ‘

E | [| [| [\

Project

L

0 0 0.

‘ ReferenceAssociation | atMembership ‘ | ConnectionEnd |

|s
E E | [|

85

GME Manua and User Guide

In GME there are two kind of attributes, local and global attributes. Local attributes are defined
directly in the context of an fco. Global ones may be associated with more than one fco
(Attri but eAggregati on).

Constrai nt is contained by Cbj ect which corresponds to metakind and the last concept is the
Regi st r yNode mentioned earlier.

That is shown in the last figure Project contains MetaObject and all associations which mean many-many
rel ationships between metaobjects.

9.2.5. How to Use Mon

We mentioned earlier BONZ2 isbased on MON thusit is obviousthere are alot of similarities between the
two object networks. Because for an interpreter writer the architecture of BON2 is more important than
MON, we will mention the specific usage and differences during the discussion of BON2.

9.3. Builder Object Network version 2.0
9.3.1. Architecture of BON2

For a user to use and extend BON2 appropriately, she must understand the architecture and the essential
conceptsimplemented by default in the object network. When somebody would liketo write an interpreter,
shewantsto do it asfast asit is possible, she does not want to deal with typical programming issues (i.e.
object disposal, complexity of COM, etc.), and she would like to face only the domain-specific task. If an
interpreter writer follows the rules discussed in these subsections and she is familiar with GME, she has
to know amost nothing about C++ and COM to achieve the goal simply and very fast.

BONZ2 defines three layers (four layers) based on each other:

e COM layer (0. layer) — Thisis the programmable interface of GME, the lowest layer which should be
absolutely hidden from the user because of its complexity, and, inthe case of interpreters, the superfluous
knowledge of how to use COM properly. Correspondent files are net a. i dl , nga. i dl . Example:
| MyjaFCOCOM interface.

* Implementation layer (1.a. layer) — Thislayer is the core of BON2 in which all easy-to-use calls using
MON are trandated into COM operations. This is the place where BON objects are cached and where
the basics of BON2 extensions are implemented. Correspondent files are MONImpl.h, BONImpl.h.
Example: BON: : FCO npl implementation class.

* Interface layer (1.b. layer) — This consists of the classes and operations which are exported to the user
(i.e. they have public visibility). These are discussed in the Appendix concerning MON and BON.
Currently, this layer is built into the previous one. Correspondent files are MON. h, BONI npl . h.
Example: BON: : FCO npl .

* Wrapper layer (2. layer) — Thetop most layer consists of the wrapperswhich handlethe object references

and provides apointer-likeinterface. When auser uses BON2, she always hasto deal with these classes.
Correspondent files are MON. h, BON. h. Example: BON: : FCOwrapper class.

9.3.2. Wrapper Classes

The wrappers are created in order to make interpreter writing easier.

First of all, wrappers should be considered as special pointers (i.e. smart pointers) which hold a pointer to
areal object. If all (direct or indirect) references to the real object are released, the object is disposed of

86

GME Manua and User Guide

automatically. It isrecommended to use this automatic mechanism instead of a manual garbage collection
scheme.

BONZ2 wrapper classes use the operator - > to access functionality, in contrast to MON wrappers which
use the simple operator . . Hereis an example:

BON: : FCO fco; // Here is an fco.

/1 fco.isPort(); // This would result a conpiler error because the w apper does not
have this operation.

fco->isPort(); // The operator[->] dereferences a BON:: FCO npl pointer.

MON: : FCO et af co = fco->get FCOWeta(); // obtain the definition of the FCO

std::string strKindName = netafco.nanme(); // get the name of the neta, the kindnanme of
t he obj ect

I mportant

Although advanced programmers may get the pointer of the implementation object and store it
outside of wrappers, it is not recommended, because they have to be sure somehow the pointer is
valid and not disposed already. With the wrappers, validity of a BON object can be determined
by operator[bool] and operator|!].

BON: : Project project; // Let’'s assune the project is valid.

BON: : Fol der root = project->getRootFolder(); // Get the root folder

if (root) AfxMessageBox(“RootFol der always exists!”);

BON: : Fol der parent = root->getParentFolder(); // Get the parent of the root, which is
NULL.

if (! parent) AfxMessageBox(“RootFol der never has parent”);

The user can check the equality of two BON objects with the oper at or [==] and operator[!=].
It must be emphasized that this equality means that the two COM objects are equal, not (necessarily)
the wrappers. It is not necessary to obtain the implementation pointers to check whether two objects are
equal or not. The oper at or [<] makesit possible for the objects to be included into any kind of STL
container, including setsand maps. These operatorscan be used for all BON objects(e.g. BON: : Pr oj ect

is comparable with BON: : Ref er encePort).

The last important feature of wrappers is the casting mechanism. This is implemented via the copy
constructors and assignment operators. If the cast succeeds, then the pointer held by the appropriate
wrapper will be valid, otherwise it will be null. To understand this, let's see the following example.

BON: . Model child; // Let’'s assune child is valid

BON: : Obj ect parent = child->getParent();

if (parent) AfxMessageBox(“This is always valid”);

BON: : Mbdel nodel = object;

if (nodel) AfxMessageBox(“The parent is a nodel”);

if (BON: :Folder(object)) AfxMessageBox(“The parent is a folder”);

These facilities are implemented in the wrapper classes. For details see the Appendix about BON
invocations and classes.

9.3.3. Objects’ Lifecycle in Components

The user does not have to deal with the construction and destruction of BON objects. However it is good
to know how it isimplemented and what the guidelines are.

A BON object isaways created the first time the user obtains areferenceto a COM entity. In most cases,
an instance of aBON implementation classis assigned to the appropriate COM object and the BON object
is cached.

Morethan one BON object may be assigned to the same COM object. The wrappers have the responsibility
to decide when a BON object must be erased from the cache.

87

GME Manua and User Guide

Thetime of disposal of objects depends on two essential factors:
« the component's type.

« the number of referencesto a BON implementation object.

Note

The whole meta object network (all MON objects) is created when the component starts to run
and it is destructed when the component accomplishes its task.

9.3.3.1. Objects in Add-ons and in Interpreters

The time when objects are freed differsin the case of add-ons and interpreters (plug-ins are regarded here
as paradigm-independent interpreters). The difference is based on the typical process of the components.

As we mentioned above, BON objects are created if and only if they are required to be constructed (i.e.
the first time COM objects are retrieved), in contrast with the previous version of BON, where the whole
project was mirrored and all BON objects were created at the time of the component initialization.

When the user writes an interpreter it is likely that she would like to use an object more than once and
she would like to eliminate the time consumed by repeated construction and destruction. Thus, in case of
interpreters, a BON object is cached (remains in the memory) until the component finishes running. In
short, if an object isretrieved, it will not be disposed even if there are no referencesto it.

Add-ons associated with a project run and occupy memory the whole time until the project is closed. If we
followed the previous rule of managing objects, the memory would grow while the add-on runs. Therefore
in case of add-ons, a BON object is immediately destructed after the last direct or indirect reference is
released.

9.3.3.2. Aggregated Reference-counting

As we mentioned earlier wrapper classes are smart pointers; they manage the references to an object
and dispose a BON implementation instance if the last reference is released. If you extend BON classes,
take care not introduce reference cycles, as the memory can never be reclaimed unless the references are
manually set to nul | . Thisistypically done during finalization.

9.3.4. Extending Interpreters

The lifecycle of GME components is the same. After they are initialized, they start to run, do their tasks
and terminate, disposing of the acquired resources.

During theinitialization all additional resources of the component of the user must be obtained and created.
This can be done completed thei ni ti al i ze() method of BON: : Conponent class. When this code
part runs, the singleton project for the | MgaPr oj ect and the whole meta object network are aready
created.

During thefinalization all resources must be released. The process of disposal consists of the destruction of
all BON and MON objects(releasing al referencesto BON objects) and rel easing any additional resources
(database connections, etc.). Thiscaninthefi nal i ze() operation of BON: : Conponent .

The steps of finalization are the following (these are done automatically):
« Cdlfinalize() of BON: : Corponent .

* |terate over the set of the existing BON objects and call their f i nal i ze() .

88

GME Manua and User Guide

 Thereference counting mechanism takes care of the BON objects' disposal, and everythingisdestructed.

Where the component core implementation must be included is different in case of add-ons and
interpreters.

Theinterpreters entry point isthei nvokeEx() of BON: : Conponent and thisisthe main part. Here
is a descriptive example:

voi d Conponent::invokeEx(Project& project, FCO& current FCO, const std::set<FCO>&
set Sel ect edFCCs, | ong | Param)
{
Af xMessageBox(“Project: “ + CString(project->getNane().c_str()));
if (! Mdel(currentFCO)) {
Af xMessageBox(“The context of the conmponent nust be a nodel!”)
return;
}
CString strObjects(“Selected objects are: \r\n”);
for (std::set<FCO>::iterator it = setSelectedFCCs.begin() ; it !I=
set Sel ect edFCCs. end() ; it++) {
strObjects += CString((*it)->getNane().c_str()) + “\r\n”);
}
Af xMessageBox(strChjects);
} /1 end of invokeEx

9.3.5. Add-ons and Events

The entry point of an add-on means the reaction to the specific event of a specific object and it can be
accomplished in different ways.

The user may handle and react to all eventsin obj ect Event Per f or med() of BON: : Conponent .
Hereisan example:

voi d Conponent: : obj ect Event Perf or med(Cbj ect & obj ect, unsigned | ong event, VARIANT v)
{

/1 v in this version of BON2 is unused, in the future it will contain

/'l appropriate event paraneter(s)

Af xMessageBox(“The context: “ + CString(object->getName().c_str()));

/1l At the sane time nore than one event may be perforned.

CString strEvents(“Events: \r\n”);

for (MON: : QbjectEvent Type eType = MON: : OET_(bj ectCreated ; eType != MON:.: OET_Al|

eType++) {
strEvents += CString(toString(eType).c_str()) + “\r\n”;
}
Af xMessageBox(strEvents);
}

This way of handling events is the most general. It is likely the user may prefer the
BON: : Event Li st ener interface. This interface has the event Per f or ned() operation which is
empty by default. The operation only has a BON: : Event argument containing the context object, the
event type, and the event parameters (if they exist).

TheBON: : Event Li st ener interface must be implemented by aclass, and an instance of the class has
to be passed to the BON project or toaBON objectaddEvent Li st ener () operation. Anevent listener
may specify thetype of the eventsit canreact to. It can bedonewith overridingtheget Assi gnnent s()

operation of the listener (it reactsto al events by default).

The order of event handling:
» BEventListeners attached to the project are called if they active.

» EventListeners attached to the context object are called if they active.

89

GME Manua and User Guide

e obj ect Event Per f or ned() of the BON: : Conponent iscalled.

9.3.6. BON Extension Classes

So that the user can writeaninterpreter which issimple enough to create and modify, the BON2 providesan
easy-to-use base. The generic implementation (i.e. BON: : FCOand BON: : FCO npl) may be extended
to accommaodate a specific paradigm.

The extendable classes are BON: : FCO, BON: : At om BON: : Model , BON: : Connecti on,
BON: : Set and BON: : Ref er ence. Of course a user extension can be extended also.

Wewill demonstrate the extension with asimple example. Let us assumethat thereisamodel whose name
is‘Compound’ and the user wants to create a BON class which extends the model's functionality with an
operation. The operation returns a set containing Compound objects having at least two children.

9.3.6.1. Creating the Implementation Class

The creation of a BON extension must be done in the extension layer (i.e. the implementation class must
be derived). In order to do this the following rules are important:

* Although the implementor extends the implementation class, the user must always use the appropriate
wrapper classes, and not the implementations.

 If someinitiadization isrequired, thenthei ni ti al i ze() method must be overridden.

* Incaseof interpreters, thereisno point in caching theresult of ageneric call because only thelightweight
wrappers are created.

 |f BON objects are cached by the extension, it counts as an additional reference. The containers must
be emptied and objects must be set to null in the overridden f i nal i ze() method.

* Itisgood practiceto concatenate ' Impl’ string to the name of the implementation class. The appropriate
wrapper class uses the name without ‘Impl’.

Hereis our Compound implementation:

cl ass Conpoundl npl

: public BON :Mdellnpl // extending the inplenentation class
{
public :

void initialize()

/'l cache the proper child nodels
std::set<BON: : Model > tenp = get Chi | dvbdel s();
for (std::set<BON: :Mdel>::iterator it = tenp.begin() ;
it I=tenp.end() ; it++) {
if ((*it)->getbjectMeta().nane() == “Conmpound” &&
(*it)->getChil dFCCs().size() >= 2) {
mySet.insert(*it);
}
}
}

voi d finalize()

{

mySet.clear(); // inportant to avoid reference cycles

}

std:: set <BON: : Model > get MyConpounds()

{
return nySet;

90

GME Manua and User Guide

}

private :
std:: set <BON: : Mbdel > nySet ;

}; /1 end of class

9.3.6.2. Create the Wrapper Class

After the implementation is ready, the user has to generate an appropriate wrapper class to the
implementation class and assign it to a specific kind defined by the paradigm. These correspond to two
macros; DECLARE_BONEXTENSI ONand | MPLEMENT _BONEXTENSI ON.

DECLARE_BONEXTENSI ONmacro creates the appropriate wrapper. It must precede the macros defining
the classes which derive from this class. The parameters are the following:

e Base wrapper class — This class has to be the wrapper class of the base class of the user-defined
implementation class. In our caseit is BON: : Model .

* Implementation class— Thisisthe user-defined implementation class. In our caseitisConpoundl npl .

» Wrapper class— Thisisthe class which has to be generated to the specified implementation class. This
will be the user-defined wrapper class. In our caseit is Conpound.

DECLARE_BONEXTENSI ON(BON: : Mbdel , Conpoundl! npl, Conpound);

Thel MPLEMENT _BONEXTENSI ONmacro, insertedintoa. cpp file, isfor assigning the BON extension
to akind or acontainment defined by the paradigm, or to ameta- kind defined by GME. The implementor
may specify more than one kind, or even assign a concept to akind and a containment at the same time.
The parameters are the following:

* Wrapper class— The name of the BON extension which must be assigned. In our caseit is Conpound.

» Assignment string — Thisisastring literal containing a space separated list of kind names, containment
rolenames or meta-kind names. In our caseit is ssimply “Compound”.

| MPLEMENT_BONEXTENSI ON(Conpound, “Conpound”);

After this step the BON extension to the Compound concept defined by the paradigm is ready to use
everywhere.

Note

It is not required that the name of the wrapper classis the same as the kindname. It is only good
practice.

9.3.6.3. Assigning BON Extensions

Aswe mentioned above, not only kinds can be specified for aBON extension, but containment roles, even
metakinds aswell. It is possible that for one COM object more than one BON extension could be created.
In order to avoid collisions and resolve them (if we can) there is a precedence defined among the names.

In the following enumeration the first is the highest precedence.
 Containment rolename defined by the paradigm (e.g. “ConpoundPar t ")
 Kindname defined by the paradigm (e.g. “Conpound”)

» Metakindname defined by GME (e.g. “BON: : Mbdel ", “BON: : FCO', ...)

91

GME Manua and User Guide

Therules are the following:
« If thereis containment role assigned:
« Only one containment role : create appropriate BON extension.

* Morethan one containment role : throw an exception.

If thereis kind assigned:
¢ Only onekind : create appropriate BON extension.

* Morethan onekind : throw an exception.

If thereis metakind assigned:
¢ Only one metakind and it complies with the implementation : create appropriate BON extension.

» Otherwise : throw an exception.

If thereis no assignment:
 Create the appropriate generic BON implementation.

A more sophisticated example is the following. The user creates an At onEx BON extension with
additional functionality extending the generic GME concept At om After that she extends the At onEx
with Par anet er , and Par anet er isextended with Mai nPar anmet er which isassigned to a specific
role.

DECLARE_BONEXTENSI ON(BON: : At om At onEx| npl , At onEXx) ;
DECLARE_BONEXTENSI ON(At onEx, Par anet er | npl , Par aneter);
DECLARE_BONEXTENSI ON(Par anet er, Mai nPar anet er | npl , Mai nPar anet er) ;
| MPLEMENT_BONEXTENSI ON(At onEx, “BON: : Atonf) ;

| MPLEMENT _BONEXTENSI ON(Par anet er, “ | nput Par amet er Qut put Par anet er Paraneter”);
| MPLEMENT_BONEXTENSI ON(Mai nPar anet er, “ Mai nPar aneter”) ;

9.3.6.4. Multiple Inheritance

It isacommon for the implementor to want to use multiple inheritance in the context of BON extensions.
A typical caseis demonstrated in the next figure.

Figure 39. Multiple inheritance with BON extensions

PracessingUnit BON::FCOImpl BON:-FCO
<<FCO>>
] I] I
#fmum by Virtual by Zé 4\1[@ by Virtual by 4
rafanlt thansar dafanlt rafalt
Zx BON::Modellmpl | ProcessingUnitimpl | BON::Model | ProcessingUnit |
Compound . L
<<Model>> Compoundimpl Compound
Inheritance in Inhertance in the Inhertance in the
The GME paradigm implementation layer wrapper layer

92

GME Manua and User Guide

At first the user wants to implement a BON extension which corresponds to a Pr ocessi ngUni t
concept. The metakind of Pr ocessi ngUni t is FCO, therefore the class in the implementation layer
must be abstract and cannot be instantiated. Conpound derives from Processi ngUnit in the
particular domain, so the implementation class extends Pr ocessi ngUni t | npl . Because the metakind
of Conmpound isModel , it hasto derive from BON: : Model | nmpl also.

Therules that the user must comply with are the following;:

Abstract BON extensions — If a user wants to implement the common behaviour of classes in a
base class, but she does not want to or she cannot assign any kind, containment to the extension, to
create the appropriate wrapper class she must use the DECLARE_ABSTRACT _BONEXTENSI ON and
| MPLEMENT _ABSTRACT _BONEXTENSI ON macros.

Public inheritance — Only public inheritance may be used.

Metakind compliance — In aBON inheritance chain, the user cannot mix the metakinds except of FCO
(e.g. al descendants of a BON extension having Atom metakind will have Atom metakind)

Virtual inheritances — In the case of diamond inheritance, virtual inheritance must be used (see how
Processi nguni t | npl extends BON: : FCO npl). In case of wrapper classes al inheritances are
virtual.

Multipleinheritance—In these cases DECLARE_BONEXTENSI ON2 or DECLARE_BONEXTENSI ON3
can be used.

The example code:

/'l Realization of the inplenentation classes
cl ass Processi ngunitl npl

: virtual public BON: :FCO npl

/1 Note: BON:.:FCO npl is an abstract class by default

voi d doSomething() { }
H

cl ass Conpoundl npl

public BON: : Model I npl, public ProcessingUnitlnpl

/1 Decl are BON extensions
DECLARE_ABSTRACT_BONEXTENSI ON(BON: : FCO, ProcessingUnitlnmpl, ProcessingUnit);
DECLARE_BONEXTENSI ON2(BON: : Model , Processi ngUnit, Conpoundl npl, Conpound);

/'l 1 mpl ement BON wrappers (assignnent if it is required)

MPLEMENT_ABSTRACT_BONEXTENSI ON(ProcessingUnit);
MPLEMENT_BONEXTENSI ON(Conpound, “Conpound”);

/1 Using the extensions
void print(const BON:.:FCC& fco)

if (BON::Mdel(fco)) AfxMessageBox(“It is a nodel!”);
ProcessingUnit unit = fco;
if (unit) {
uni t - >doSonet hi ng() ;
if (Compound(unit))
Af xMessageBox(“lIt is a Conpound!”);
el se
Af xMessageBox(“It is another descendant of ProcessingUnit!”);

}

93

GME Manua and User Guide

} /1 end of method

9.3.7. Essential Classes of BON2

As we noted discussing how to use MON classes, there are alot of similarities between BON2 and MON
regarding the usage and the architecture. Thisis because BON2 is based on MON. Examining the figure
about BON2 classes that have the appropriate COM interface, we find that these classes are almost the
same. For all BON2 classes, the user can find the proper operation with which she can obtain the meta
information (e.g. the operation BON: : FCO npl : : get FCOvet a() returns MON: : FCO).

Figure40. Relationship between the Project and BON Objects, associationsto MON

classes
e
’o;mmu__, .- [Obiect | [Atribute |, .- [Attribute |

e dsl
: B

e dsl
N N

Looking at the next figure carefully, there are only two exceptional classes which do not have the
correspondent COM interface (i.e. Connecti onEnd and Ref er encePort). The concept of the
Ref er encePort may look familiar to someone who used the previous version of BON, but there are
essential differences which will be discussed in the next subsection.

Figure 41. BON classes, which have the corresponding COM interface

‘ ConnectionEnd | ‘ Attribute ‘

‘ ReferencePort | ‘ RegistryNode ‘

9.3.8. GME Metakinds in the Project

Objects in projects have metakinds according to the paradigm, and they can play only the roles and can
take part in the relationships that come from the appropriate metakind. For example, if an objectisamodel
(i.e. itisaBON: : Model whose metais MON: : Model), the user may obtain the children contained by
the object. The children are BON: : FCOobjects. The specific model kind (i.e. MON: : Mbdel objects) tells
the user what the children'skinds can be (i.e. Compound model may containPri m ti ve or Conpound
models among others).

If somebody is familiar with GME, all the well-known GME concepts are familiar except of a new one
caled Ref er encePor t Cont ai ner with Ref er encePort and Connect i onEnd.

94

GME Manua and User Guide

Figure 42. BON classes with their specific relationships

Refarence |, 0.1 | ReferencePoriContainer | [connectian |
Taranca TCoramer

| B

[connection

2. | ends

0. ConnectionEnd
o.- | ReferencePort |, .
pares

o

0.1 | parentFolder

9.3.9. ConnectionEnds and ReferencePorts

Let's clarify with the previous and the next figure what Ref er encePor t means.

Note

During the explanation we assume that there is only one Aspect in the paradigm in order not to
deal with relationships between objects, ports and aspects.

9.3.9.1. ReferencePort and Its Container

If areference referred to a model, then this reference was called Bui | der Model Ref er ence in the
previous version of BON. Model references might contain reference ports. The port (i.e. the FCO) and the
reference port were different objects.

In BONZ2 these concepts are retained, but they are clarified.

Bui | der Mbdel Ref er ence of BON iscalled Ref er encePor t Cont ai ner inBON2. GME allows
that a reference may refer to models and other objects which are not models. It is obvious a reference
may ‘contain’ reference ports if and only if it refers to a model. If the user changes the referred object
from a model to an atom, then the reference cannot ‘contain’ reference ports. Because of these facts
Ref er encePor t Cont ai ner is an interface (in contrast with Bui | der Mbdel Ref er ence object
of BON) which isimplemented by the reference when it refers to amodel.

That means references can contain reference portsindirectly through the Ref er encePor t Cont ai ner
interface which always has to be obtained from the reference before use (and which is not recommended
to cache by the component implementor). Consequently, only Ref er encePor t Cont ai ner contains
reference ports.

BON: : Ref er encePort isretained in BON2, but its primary ancestor is not the same as the ancestor
of BON: : FCO. The explanation isthat primarily FCO is ametakind and reference port is another concept
defined because of connections.

95

GME Manua and User Guide

9.3.9.2. Relationship Between ReferencePorts

In the next figure we find a model called Model and four references (called Refl, Ref2, Ref3 and Ref4)
referring directly or indirectly to the model. Model contains two atoms called P1 and P2 which are ports.

Figure 43. Relationships of Model references and Reference-ports

_Mr2 P11

I;"Reﬂ = Model
| Vw2 Pl AZ L Mme P A3
/’

\ RefZ-> Refl // (1 Ref? = Ref

| Werz P

Ref4 -= Refa

Relationship between References and the Model
Relationship between Reference-ports and the FCO
Relationship between References-ports

Because the references ‘refer’ to amodel, they implementsthe Ref er encePor t Cont ai ner interface
and they ‘contain’ reference ports with the same names (P1 and P2).

Reference portsrefer to the port contained by the model (bluelinesin thefigure). We say that the reference
ports are the descendants of the port. Ref 2 refersto Mbdel viaRef 1. P2 of Ref 1 isthe parent of P2 of
Ref 2. The parent of P2 of Ref 1 is null because Ref 1 refersto Model directly. P2 of Ref 1 hasthree
descendant reference ports and two children (i.e. two immediate reference ports). This relationship might
be important for the component implementor if she wants to handle the connections between objects in
an advanced way.

9.3.9.3. ConnectionEnd and Connection

Connections in BON2 are implemented in a different way compared to the previous implementation. In
both ends of aconnection, only Connect i onEndscanexist. A Connect i onEnd canbean objectitself
— to be more precise, an fco — or a reference port. Ref er encePort derives from Connect i onEnd
because this concept is not placeable into the set of metakinds and it has a different meaning.

L et's see the following examples considering the previous figure to understand the described issues.

/1 the nodel called Mdel in the figure

BON: : Model nodel ;

/1 P2 of Model, we onmt the acquiring operations

BON: : At om p2_nvdel ;

/1 Refl refers to Model

BON: : Reference refl = nodel - >get ReferredBy();

/1 PortContainer of the nodel reference

BON: : Ref erencePort Cont ai ner rpc_refl = refl->get Ref Port Cont ai ner();
/'l Find the ReferencePort referring to P2

BON: : Ref erencePort p2_refl = rpc_refl->get ReferencePort(p2_nodel)

/'l Parent of this ReferencePort is null
p2_ref 1- >get Parent Port () ;

96

GME Manua and User Guide

9.3.10.

/| Descendants of P2 of Refl containing P2 of Ref2, Ref3 and Ref4
p2_ref 1- >get Descendant Port s() ;

/1 Children of P2 of Refl containing P2 of Ref2 and Ref3
p2_refl->get Chil dPorts();

/Il Get referred FCO (i.e. p2_nodel, P2 of Mddel) of P2 of Refl.

p2_refl->get FCQ() ;

/'l Get objects connected to P2 of Mddel directly or indirectly (via reference
/1 ports). It includes A Al, A2, A3 and A4.

p2_nodel - >get ConnEnds(“”, “", true);

/'l Get objects connected to P2 of Mddel directly w thout reference ports

/1 1t includes only A

p2_nodel - >get ConnEnds(“", “”, false);

/] Get objects connected to P2 of Refl directly or indirectly (via descendant
Il reference ports). It includes Al, A2, A3 and A4. A is not included.
p2_ref 1- >get ConnEnds(“", “", true);

/] Get objects connected to P2 of Refl directly w thout descendant reference
/'l ports. It includes only Al.

p2_ref 1- >get ConnEnds(“”, “”, false);

/'l Gets objects connected to P1 of Ref3 or its referencers that have the "src" role in
the connection (A3, A4)

pl_ref 3- >CGet ConnEndsAs("src")

/'l Gets the objects connected to P1 of Ref3 that can be reached by outgoing

met a_connection "src" role connections and have no such outgoi ng connections

Il (A3, A4)

pl_ref3->get Di rect ConnEnds(meta_connection, "src")

/'l pl_ref3 has no outgoing "dst" connections, so this returns pl_ref3

pl_ref3->get Di rect ConnEnds(meta_connection, "dst")

It is good to know that the casting mechanism defined by the appropriate wrapper classes
works transparently between BON: : Connecti onEnd, BON:: FCO and its descendants and
BON: : Ref erencePort aso. For example to decide whether a connection end is a reference port we
can do thisin two ways.

if (BON :ReferencePort(connectionend)) { // do sonething }
if (connectionend->i sReferencePort()) { // do sonething }

Type Inheritance in BON2

Type inheritance is specia feature introduced in GME. This issue is implemented by interface called
BON: : Typel nhCbj ect, BON: : Type and BON: : | nst ance. These are interfaces and an FCO
always implements one of BON: : Type or BON: : | nst ance.

In order to obtain the type inheritance interface the user has to use the get Typel nhCbj ect () of
BON: : FCO. After asimple cast the user may obtain the type of the instance or the subtypes of the type.

After obtaining the type inheritance interfaces, the user implicitly holds a reference to the fco itself.

97

GME Manua and User Guide

Figure 44. Relationships of Attributes, Type-lnheritance Objects and
RegistryNodes

»
object

1 [rome 1.0

RegistryNode |, .

|CunnsclionﬁsgistryNoda | ‘ FCOExRegistryNoda |

0. | attributes ModelRegistryNode
Attribute

9.3.11. Registry, Attributes and Object Preferences

Theregistry of aBON2 object isimplemented similarly to theregistry of MON. Theroot Regi st r yNode
can be accessed withtheget Regi st ry() of BON: : Obj ect . Theroot registry nodeisdefined in order
to separate the interfaces; the real and existing root nodes are children of the dummy root node.

When using the registry, it isimportant to know that caching registry nodes is not recommended:

* If the user uses at least oneregistry node (even the dummy root), she holds areferenceto the appropriate
object implicitly. Before the object could be disposed, al nodes must be released. This is true for
BON: : Attri but e aso.

« If thecomponent not only readsthe project but may modifiestheregistry of an object or if the component
is an add-on reacting to events, then when modifying or erasing at least one registry node, all registry
nodes of the object will be invalid and the user has to obtain them again.

Asweknow, objectsin the project has predefined properties defined by GME. Mainly these propertiesare
related to visualization and implemented in the registry of the object. The appropriate access (including
the type — integer, string, long, etc. - and the registry path) of these values varies. Using them manually
viathe generic registry interface is very error-prone and difficult to memorize.

This is the reason why special root registry nodes are introduced that extend the
RegistryNode interface. These are the following: FCORegi st r yNode, FCOExRegi st r yNode,
Connect i onRegi st ryNode and Mbdel Regi stryNode. Except for FCOExRegi st r yNode,
which can be obtained from fcos which are not connections, the use of the others is obvious.

An example:

/'l Get the color of the portnames of the port
COLORREF crPort = BON: : Mbdel Regi stryNode(nodel - >get Regi stry())->get PortNaneCol or();

98

GME Manua and User Guide

/1 Oobtaining the position of an FCO in the Aspect ‘' Aspect’
BON: : Point pt = BON: : FCOExRegi stryNode(fco->getRegistry())->getLocation(“Aspect”);

9.4. How to create a new component project

The first time you wish to create a component project, you must run C: \ Pr ogr am Fi | es\ GVE\ SDK
\ BON\ W zar d\ set up90. j s. Thisregisters the GME project typesin Visual Studio.

To create aBON project, open Visual Studio. Go to File | New Project. Under Visual C++, select GME,
then the type of component you wish to create. Give the project a name, then hit OK. Hit Next >. Under
Par adigms, enter the name of the metamodel. Hit Finish.

The resulting configuration is a ready-to-compile Visual Studio workspace (Conponent. dsw,
BonConponent . dswor BON2Conrponent . dsw). If the BON is selected, ssmple Conrponent . cpp
and Conponent . h files are generated, in case of BON2 these files are BON2Conponent . h and
BON2Conponent . cpp. The user is expected to implement the component by modifying these two files
and adding other filesif necessary. The other filesin the workspace are normally not modified by the user,
and for this reason they are generated with aread-only attribute.

After building the project, the component . dl | is registered and associated with the paradigms you
specify. When you edit a model using one of these paradigms and press the interpret button, you launch
this component (if there are more than one components associated with the given paradigm, a menu will
pop up to choose from). The. dl | will be located and loaded at thistime.

9.5. Extending the Component Interface using the BON
Extender interpreter

After writing afew interpreters, one realizes that the extension of the Conponent Interface (as shown
above) is a repetitive and boring task. The BON Extender interpreter is aimed to automate this process.
Based on a specific metamodel, domain-specific skeleton code is generated. Thus when you write
your interpreter (in the specific paradigm), you will have only to enrich the generated classes with the
functionality you want.

The BON Extender interpreter creates specialized class definitions for all object kinds (even for abstract
ones). These specialized classes will be instantiated when your interpreter executes. The output consists
of the skeleton class definitions and their implementation, in two files. The filenames are formed based
on the paradigm name, appended with the string “BonExtension”. A skeleton visitor class and alog file
is generated, also in the same directory, which has the name of the paradigm appended by the “Visitor”
and “BonExt.log” strings respectively.

We will discussin detail the content of the class extensions header file.

9.5.1. Naming convention used

Plain names are used for FCOs and Folders, Attributes. These names are usually valid identifiers for C+
+ compilers. However in the case of EnumAttributes, the enumerated items will be encapsulated by a C
++ enumeration type. These fields may be defined without many restrictions during meta-modeling, so a
name validation takes place, converting non-al phanumeric characters to underscores. If the enumeration
value starts with adigit aleading underscore will be inserted.

In order to avoid name conflicts (e.g. in case default name is used: a Connection kind may be named
Connection) the specialized classes will be part of anamespace generated based on the validated paradigm
name.

99

GME Manua and User Guide

Below are some examples generated based on the SF paradigm. Processing and Compound are model
kindsin this paradigm.

namespace SF_BON {
DECLARE_ABSTRACT_BONEXTENSI ON(Model , Processingl npl, Processing);
DECLARE_BONEXTENSI ON(Processi ng, Conpoundl npl, Conpound);
class Processinglnpl : public Mdellnpl {
publi c:
std: : set <l nput Si gnal s> get | nput Si gnal s();
std: : set <Qut put Si gnal s> get Qut put Si gnal s();
std:: set<Signal s> gets();
b
cl ass Conpoundl npl : public Processingl npl

{
publi c:
/1 kind and role getters
std:: set<Processing> getParts();

}; /1 end nanespace

Pr ocessi ng (with Mbdel stereotype) has no ancestors in the metamodel, so it derives from the
BON::ModelImpl class. Conpound derivesfrom Pr ocessi ng so thiswill bereflected in the generated
skeleton.

Container kinds, like Models, Sets and Folders, will have specialized get methods returning the contained
roles (in case of models) and kinds (in case of sets, folders).

TheConpound class get Part s() methodreturnsaset of Pr ocessi ng instances, so usersdon't have
to deal with the conversion from BON: : Model to SF_BON: : Pr ocessi ng type. The method nameis
based on the role name “Par t s” (see containment relation between Conpound and Pr ocessi ng).

ThePr ocessi ng classhasthree get methodswhich arerelated: two get methods(get | nput Si gnal s,
get Qut put Si gnal s) which return the contained objects having | nput Signals and
Qut put Si gnal s role, and an aggregated get method (get s) which returns all objects derived from the
Signal base. The suffix “s” comes from the role name specified in the SF metamodel for the containment
between Pr ocessi ng and Si gnal . If thisrolename had been empty thentheget Si gnal namewould
have been used. Sometimes name conflicts happen because of these naming conventions, therefore the
following distinction is made by the BonExtender: the aggregated get methods may get ani nt dunmy
parameter.

If the Si gnal atom had been non-abstract and the rolename empty in the meta-model the following get
methods would have been generated:

class Processinglnpl : public Mdellnpl {
publi c:
std: : set <l nput Si gnal s> get | nput Si gnal s();
std: : set <Qut put Si gnal s> get CQut put Si gnal s();
std::set<Signal s> getSignals(); // role getter
std:: set<Signal s> getSignal s(int dunmmy); // aggregated
H

Connections will have specialized source and destination get methods. However, when a connection can
have a reference port as its end, the return value will be simply BON: : Connect i onEnd. In the case
below no reference portsareinvolved, so aspecialized classlike Signal will bereturned by the get methods:

cl ass Datafl owConnl nmpl : public Connectionl npl
{
publi c:

/'l connectionEnd getters

Signal getSrc();

Si gnal getDst();

/11 BUP

100

GME Manua and User Guide

/1 add your own menbers here
/11 EUP

b

Beside this, the source and destination kinds will have two additional get methods: one for inquiring the
connection links (starting or ending at that particular kind), another for inquiring the kinds connected to
the object through a particular connection.

class Signallnmpl : public Atom npl

{

public:
/'l connection end getters
std::mul tiset<Signal > getDatafl owConnSrcs();
std::mul tiset<Signal > getDatafl owConnDsts();
/'l connection link getters
std: : set <Dat af | owConn> get Dat af | owConnLi nks() ;
std: : set <Dat af | owConn> get | nDat af | owConnLi nks() ;
std: : set <Dat af | owConn> get Cut Dat af | owConnLi nks() ;
/11 BUP
bool isMyParentPrimtive();
std::string className() { return "Signal"; }
/11 EUP

3

Furthermore, all FCOs which have attributes will have specia get methods generated, with corresponding
return types to their specification (in case of EnumAt t r i but e an enumeration type definition will be
generated based on the items declared in the “Menu items” field).

9.5.2. Ordering

The classes are generated into the header file based on the following principles: groups are formed for
classes which have a inheritance relationship among them. The groups are ordered based on how many
model kinds they contain, in descending order. Such a group is dumped in top-down order (based on
inheritance). The methods inside a class are categorized as attribute, connection get methods and role get
methods (for models) set-member get methods for (set).

The”/// BUP" and”/ / | EUP" (standing for “begin user part”, “end user part”) comments are intended to
provide a space where the user may add her own methods and members. If the user decides to regenerate
the skeleton (i.e. the paradigm changes), she won't have to insert once again her own method and member
definitions into the skeleton class definitions. The BON Extender interpreter will parse for these special
comments inside class definitions and it will insert the user defined part into the new generated header
file. This header file contains two global BUP/EUP pairs, which are intended to give a place for the user's
class definitions, if any. These global comments have to start on the first character of the line. The BUP/
EUP comments inside a class are not limited such way. These special comments are inserted only in the
generated header file.

9.5.3. Limited extension

It can happen that the user doesn't intend to work with all classesgenerated for aparadigm (i.e. the hardware
definition part may be insignificant for implementer, since her interpreter is concentrating on the datafl ow
part). The “Select classes to extend” dialog that appears during generation is intended for such cases. It
lists al the classes, which will be generated by default. If an object kind is selected for extension then its
ancestors are selected too, and if it is deselected then its descendants are deselected too. If you want to
limit the set of generated classes, then it is recommended to select “no” for each root object (staying on
top of the inheritance hierarchy) in the domains you don't want to deal with.

There is another way of using this feature: if you would like to extend the classes only to some extent
(not al classes down theinheritance hierarchy), you may like to handle some derived classes together (i.e.

101

GME Manua and User Guide

you want to handle | nput Si gnal s and Qut put Si gnal s together as Si gnal). In such cases you
can select thebase class (Si gnal) and deselect the derived classes (I nput Si gnal , Qut put Si gnal).
When your interpreter executes, abase classinstancewill be generated for each derived object inthe model.
This has consegquences for the generated get methods of containers (models, sets, folders): if acontainer is
extended (Processing) and some of its contained objectsare not (I nput Si gnal) then the specific getter
(get | nput Si gnal s), which is intended to give back a set of the specific kinds contained will return
with these objects cast to the nearest extended ancestor (Si gnal s). There is a similar mechanism for
connections, too.

class Processinglnpl : public BON : Mdell npl
{
publi c:

std:: set<Signal > getlnputSignals();

h

Since FCO (as a stereotype) objects are extended too, and may not be instantiated (at modeling time no
abstract FCO object isvisible) some limitations exist, which are enforced by the dialog. If an object which
inherits directly from an FCO is deselected, then not only the objects below it, but the whole inheritance
treeis desel ected.

If an FCO object is selected then not only its ancestors, but all of its FCO descendants and their immediate
non-fco children are selected too. In other words the extension sel ection/desel ection is limited to non-fco
sections of the inheritance trees.

If the user would like to extend some of the classes from the hierarchy below, then Model Base, AtomBase

and SetBase classes are definitely needed. Their descendants may be selected or deselected at the user's
choice.

Figure 45. Example metamodel for the BONExtender interpreter

FCOBase
<<FCO>>

:

FCODerived?1 FCODerived2
<<FCO>> <<FCO>>
AtomBase SetBase
ModelBase <<Atom=> <<Set>>
<<Model>>
Atom1 Atom2 Setl

Model1 Model2

<<Modal>> <<Model>> <<Atom=> <<Atom=> <<Sat=>

Model1A Model1B
<<Model>> <<Model>>

102

GME Manua and User Guide

10. Constraint Manager

10.1. Features of the new Constraint Manager

GME contains the improved constraint manager which is fully compliant with the standard OCL 1.4
specification. Here we enumerate the features of the Constraint Manager, without delving.

10.1.1. Standard OCL features

The following features are new regarding the language (MCL), which was used earlier to write constraints
in GME.

Thelanguageis a typed language.

Undef i ned isintroduced as avalue.

Variable declaration is supported. Performance and readability can be taken into consideration.

All OCL operators are implemented.

Operators have the right precedence and associativity.

All features of predefined primitive types are implemented.

Types can bereferred asocl : : Type,andnotasocl : : String.

Namespaces can be used.

Typecast isimplemented.

All compound types of OCL are implemented.

Almost all predefined iterators (exception issor t edBy), aswell asthe generic iterate are supported.
Implicit variables are implemented.

More sophisticated features and expression resolution are supported.

Short-circuit operators and iterators are supported.

Features defined by MCL are improved. More security is provided, but these calls remain insecure.
The meta-kind features are linked to the appropriate meta-kinds.

Predefined OCL types are extended with some useful features.

Standard access of attributesis supported.

10.1.1.1. New and Improved features in GME

Thefollowing features are new considering the functionality of the former version of Constraint Manager.

All former features and functionality are still available, although they are either deprecated or improved.

New kind (gme: : Proj ect) is introduced. New predefined variable called project is available in
expressions.

The Constraint Function is made to be compliant with Constraint

103

GME Manua and User Guide

Definitions defined by OCL 2.0.

More sophisticated error detection at syntax and semantic checking.

More detailed report about constraint violations.

User-friendly dialogs reporting errors and violations.

The state of the evaluation process is visible; however, it cannot be interrupted yet.
The Constraint Browser displays all constraints even if a constraint has errors.

The model is maintained in a clean state (deleted user-constraints and enabling information are always
eliminated)

Theinterface of constraint-enabling functionality fitsthe concept of kinds, types, subtypesand instances.
(i.e. type inheritance)

10.1.2. Limitations and Special Issues

Due to some special properties of the GME MetaModeling environment, certain extensions and
limitations exist. These are discussed below.

10.1.2.1. Inheritance at Meta-Modeling Time

GME specifiesthreekinds of inheritance (standard, implementation and interface inheritance). But none of
these are part of GME Meta (i.e. meta-information generated by Meta-Interpreter). Inheritance is defined
only to help the meta-modeler and to facilitate her work. Consequently, inheritances only act as operators
at meta- modeling time.

This situation requires us to ease some strict rules of standard OCL. These rules include the following:

Some well-defined abstractions, which were made by the modeler, disappear because all informationis
lost. For example, if in future the standard OCL rules about accessing an association-end are allowed,
thenit islikely that many association-ends cannot be used due to ambiguity.

For akind, which isdefined in the paradigm, if either itskind isgme::FCO or itsls Abstract?flag is set,
thenit cannot bereferredin OCL expressions because these typeswill not appear in theinterpreted meta.

Inheritance information cannot be acquired between two kinds defined by the paradigm, because this
knowledge is lost during the interpretation.

Although standard OCL says that meta-kind information cannot be obtained in expressions, referring
to meta-kinds is alowed. For the time being, this is the only way to get some common information
about kinds.

If a constraint is associated with a kind, then the kind and all of its descendants will get a constraint
object which is the same as the defined one, but is a distinct entity. This problem grows in size along
with the sizes of the XMP and XML files.

If the modeler would like to write a Constraint Definition and attach it to the kind, then the definition
will be associated only with that kind, and not with its descendants. This is because there is no such
a mechanism mentioned in the previous point. Therefore, if the modeler wants to have a definition
attached to more than one kind, she must define a meta-kind as the context of the definition. Though
the propagating mechanism can be implemented, the usage of Constraint Definitions would be clumsy;
the user always would have to cast because of the lost inheritance information.

104

GME Manua and User Guide

10.1.2.2. Retained Meta-Kind Features

For the time being, all features — particularly methods — that are defined by the former language of GME
constraints called MCL are retained in this implementation, with some improvements.

The reason for this decision was that the semantic checking of OCL expressions always requires a well-
formed and valid paradigm (naturally, during the time of meta-modeling, the paradigm is neither well-
formed, nor valid). During meta- modeling, the task of gathering all the information that the checking
would require either writing a new component that always serves the valid and well-formed part of the
paradigm or integrating the Expression Checker and Meta-Interpreter. In the latter case, only syntax
checking would be performed at meta-modeling time, and the semantic checking only could be done after
the interpretation.

In case a solution exists, al features (except for some eg. gne:: hject:: nane,
gre: : Qbj ect::isNull ())will beobsoleteaswell, becausethissort of information will be obtained
by accessing kinds and meta-kinds (as predefined types of the new version of OCL implementation)
or else the features will be mapped to standard OCL features (e.g. gne: : FCO. : connect edFCGs to
association-ends).

Another important issueis that these features are not secure; however, their implementation and signature
are improved and modified. For example, connect edFCGCs of gne: : FCO expected two argumentsin
the former version of the GME constraint language: the name of the role and the name of the connection.
The result can be an empty ocl : : Set even if the specific object does not have any connection or any
role specified in the arguments. These kinds of methods should be mapped to secure feature calls, i.e.
association-ends.

The modifications of these methods are as follows:

» The features are reorganized and are associated with specific and most appropriate meta-kinds. For
example, method r ef er sTo() can be called on objects whose meta-kind is gne: : Ref er ence.
Thiswas required because MCL is not atyped language, in contrast to OCL.

» Wherever a method expected the name of a kind as an argument typed as ocl : : Stri ng, the
feature now expects the kind typed as ocl : : Type (i.e. identifier) according to the new signature.
With this dight modification mis-spelled names can be filtered immediately after writing the
expression and the expression is more readable. On the other hand, features can be overloaded as
ambiguity is avoided. For example, gnme: : Mbdel : :parts(role : ocl::String) vs
gne: : Model :: parts(kind : ocl::Type).

 If amethod expects the name of akind, the kind of the kind (i.e. the meta-kind) is specified, too. The
implementation of the method checks whether the name is the name of akind defined in the paradigm,
and whether the kind conformsto the expected meta-kind. If these conditions are not satisfied, the proper
exception isthrown and undef i ned isreturned.

» Theimplementation of all features, before performing, checkswhether theobjectisnul | . Ifitisnul |,
exception isthrown, and undef i ned isreturned.

The benefits of these features are:
» The cautious modeler has free rein in writing expressions, because the features are not fully checked.

A constraint can already be attached to different kindswithout dealing with difference and conformance,
because the features are defined by meta-kinds.

We strongly recommend that the special featuregme: : FCO: : at t ri but e should not be used. In MCL,
this method returns objects with different types depending on the type of the attribute. Thisfeatureisalso
not very secure; in the expression ocl AsType, it returnsocl : : Any inthisimplementation. It is better
to somehow cast the kind itself, and use the standard access of attributes defined by OCL.

105

GME Manua and User Guide

10.1.2.3. Special Features of Predefined OCL Types

In GME, there are some special features with which predefined OCL types are extended, but they are not
part of OCL specification.

These are in order:

e ocl::String::intVal ue() — This feature exists because of backward compatibility, thus it is
deprecated. Standard ocl : : String: :t ol nt eger () must be used instead.

e ocl::String::doubl evVal ue() —Thisfeature exists because of backward compatibility, thusit
isdeprecated. Standard ocl : : String: : t oReal () must be used instead.

e ocl::String::match(ocl:: String) —This method is introduced so that regular expression
can be used to test whether a string matches a specific format. Thisfeature can be used well for example
to test whether the value of a string attribute has a special format or not.

e ocl::Collection::theOnly() —Thismethod exists because of backward compatibility, but it
isnot deprecated. It returnsthe sole element of acompound object. If the collection either contains more
than one element or is empty, undef i ned isreturned.

10.1.2.4. Multiplicity

In the interpreted meta-model, the multiplicity of containments, membership of sets, and association-ends
isomitted and lost. The cardinality is forced by constraints generated by the Meta-Interpreter.

The consequence is that all features that have multiplicity (i.e. the features mentioned above) return
ocl : : Set . In GME, thereisamethod ocl : : Col | ecti on: :t heOnl y() with which this problem
can be solved.

10.1.2.5. Enable-Disable Constraints
Thisisaspecial feature of GME with which the user may disable constraints defined in the paradigm.

This disabling has a limitation: constraints, which have priority one and are defined in the meta-model or
included libraries, cannot be disabled

The user interface alows the user to change this flag by kind, type and subtype, as well as by instances.
Thisflag can be set for objectsdirectly or implicitly (i.e. thevalue of theflag isinherited), taking advantage
of type inheritance.

10.1.2.6. Constraints at Modeling Time and In Libraries

In GME, aspecial inheritance called type inheritanceis introduced at modeling time. To learn about more
this feature, see chapter Type Inheritance.

This solution raises a question about how to specify constraints whose context is a type, a subtype or a
sole instance. The answer is the user-defined constraint, which does not differ from the constraint defined
at meta-modeling time (meta-defined constraint) except that the user-defined constraints are stored in the
registry of the model, rather than in the paradigm.

Although the context of user-defined constraints can only be akind, with constraint disabling this context
can be tightened into specific types or even instances.

As an expert GME user knows, libraries can be defined and attached to a designated folder —i.e. to the
RootFolder. A library will be aread-only part of the model; therefore, all user-defined constraints are fixed
and cannot be changed. This allows the user to create libraries that force additional well-formedness or
validity aswell.

106

GME Manua and User Guide

10.1.3. Types and Constraints (Expressions)

In GME al types of available constraints (equation of aconstraint or aconstraint definition) contain another
predefined variable called project, in addition to self. Through project, the user can obtain all instances
of akind and attach constraint definitions to them. The instances should be associated with the paradigm
itself, rather than with the particular kind of the paradigm.

10.1.3.1. Type Resolution

In GME, namespaces are used to refer to kinds, meta-kinds, predefined OCL types, and predefined GME
kinds unambiguoudly. If the user does not use namespace, than the type resolution is well-defined.

The order of resolution:
 Look for akind defined in the paradigm.
 Look for ameta-kind defined by MetaGME.

 Look for apredefined OCL type.

Note

For example, be careful when using ocl : : Set without namespace, because it isfirst resolved
in ameta-kind, gne: : Set .

Thefollowingisalist of pre-existing namespaces:
 Predefined OCL types are in the ocl hamespace.
* Predefined meta-kinds of GME are in the gme namespace.

 Kinds defined in the paradigm can be referred to unambiguously using the namespace meta.
10.1.3.2. Invariants

In GME, only invariant constraints can be written, although a GME constraint has further properties with
which the invariant closes to post-condition constraints.

In standard OCL an invariant constraint is defined if both the type of the context and the equation of the
constraint are specified. However, a constraint is defined completely if the user names the invariants and
sets the additional properties’ values.

Event: (specia interpretation of A constraint by default can be evaluated on demand. If the user
messages of OCL 2.0) associates eventsfor aconstraint, it will be evaluated aswell, when
the context's object receives such kind of events.

With these properties (if at least one is set) an invariant constraint
can be considered asapost-condition. If the constraint hasno events
associated, then the constraint is evaluated on demand only.

The events are the following:
¢ On close model — The user closes the model. (Model)
« On create — The user creates an object. (Object)

¢ On delete — The user deletes an object. (Object)

107

GME Manua and User Guide

Priority: (evauation order of
constraints)

Depth: (extension of the invariant's
context)

On new child — The user creates an object in a model or folder.
(Model, Folder)

On lost child — The user removes an object in amodel or folder.
(Model, Folder)

On move — The user moves an object. (Object)

On derive — The user creates a subtype or an instance of atype
(Model)

On connect — The user connects the fco to another. (FCO)
On disconnect — The user disconnects the fco to another. (FCO)

On change registry — The user modifies the object's registry.
(Object) (Not implemented)

On change attribute — The user changes the value of an attribute
of the fco. (FCO)

On change property — The user changes the value of a property
of the object. (Object)

On change association — The user changes the association of the
connection. (Connection)

On refer — The user refersto the fco with areference. (FCO)

On unrefer — The user removes areference that points to the fco.
(FCO)

On include in set — The user includes the fco into a set. (FCO)

On exclude from set — The user excludes the fco from a set.
(FCO)

The higher priority an invariant has, the earlier it will be evaluated.

The highest priority, 1, has specia meaning. When an object
violates an invariant with priority 1, acritical violation occurs. If a
constraint was performed by an event, the changes will be aborted.
This prevents a model (instance of the paradigm) form having an
inconsistent state. For lower priorities the user decides whether, the
modification may be committed or aborted.

The default valueis 2.

When amodification ismade and it generates an event, aconstraint
may be evaluated even if the constraint is not attached to the kind
whose instance generated the event. This condition depends on the
value of the Depth attribute. This attribute applies only to Models
only.

* 0 - the constraint will be evaluated if and only if the context's
object receives events specified by the events attributes.

108

GME Manua and User Guide

» 1 —the constraint will be evaluated if the context's object and/
or itsimmediate children receive events specified by the events
attributes. Thisisthe default value.

< any —the constraint will be evaluated if the context's object and/
or any of its descendants receive events specified by the events
attributes.

10.1.3.3. Constraint Definitions

In the former version of the Constraint Manager only Constraint Functions could be defined. They were
similar to Constraint Method Definitions, with the limitation that they only could returnocl : : Bool ean.

In thisimplementation, the Constraint Function is updated to be compliant with the Constraint Definitions
specified by OCL 2.0.

The set of the attributes of the former Constraint Function is extended.

The attributes include the following:

* Stereotype — Stereotype of the definition, it can be either method or attribute.

* Return type — The returned kind or meta-kind of the definition.

» Context — The context of the definition. It can be either akind or a meta-kind.

» Parameter list — The parameters of the method definition, separated by a comma.
» Equation — The expression of the definition.

The definition of Constraint Definitions requires that the context, the return type and the expression must
always be defined.

Due to this extension, the Meta-Interpreter of GME had to be slightly altered in order to better interpret
the extended Constraint Functions. Of course, XML files exported before this modification and XMP files
interpreted by the former Meta-Interpreter can still be imported and used.

These Constraint Functions will be recognized as Method Definitions with the context of the singleton
gne: : Proj ect andwithocl : : Bool ean asthereturntype. Errorsmay occur, however, becausethese
methods cannot be called in expressions as afunction, rather as amethod of the predefined variable called
pr oj ect . Therefore, only these slight modifications must be made manually.

10.2. Using Constraints in GME

10.2.1.

Asan expert metamodeler knows, in the paradigmsthere are rules that cannot be expressed only with class
diagrams. These constraints used to be written in informal language, (i.e. annotations), and the modeler
interpreted it freely, even she might have misunderstood the semantics and/or the syntax.

In GME we support a constraint language, which is compliant with OCL 1.4. Because of this, more
sophisticated rules can be written and built into the paradigms.

Constraints defined by the Paradigm

Constraints can be associated only to kinds. In order to do this, we have to switch to the Constraints aspect
inthe Metamodeling Environment of GME and we may drag & drop anew Constraint to the Model Editor.

109

GME Manua and User Guide

Constraints can be connected to any kind in the paradigm. In this case the context of the constraint will be
the appropriate kind, otherwise (i.e. the constraint is stand- alone), its context will be the singleton instance
of gme: : Root Fol der . Constraints can be connected to more than one kind if it expresses common
rules for them.

If aconstraint is associated with a base-kind, then all descendants will have that constraint, as well.

After defining the context, the user has to Name the constraint. The names must be unique within kinds.
Thus akind cannot have constraints inherited from the base- kind and associated directly with the same
name.

Note

It is not required that the name include the text: constraint or any form of it.

If the constraint is violated, then the content of the Description will be shown, thus, thisfield must be very
descriptive so that the user can fix the problem.

The expression (i.e. the equation) of the constraint will be evaluated on all objects of akind, and it must
return t r ue of f al se (in case of an exception, it returns undef i ned). The context can be accessed
through the self variable (Aswe mentioned earlier, the GME project itself isalso available as pr oj ect .)

After the properties of the constraint are filled in, the user may enable the event- based evaluation. If it is
required, she may set the constraint to critical setting Priority valueto 1. In this case, the constraint will
be evaluated when an appropriate event is sent, and the modeler can only abort the last operation if the
constraint is not satisfied.

Figure 46. Constraint associated to the Compound kind in the SF paradigm.

MetaGME - SF CEx
File Edit “iew Tools ‘Window Help
N EEY - SR = AN IOERE R LW SR Do/ L EX SN
SF - /SF; X w | |Object Inspectar v X
Q T HName:|SF ParadigmSheet Aspect: | Constraints w | Base: |NA& Zoom: [100% At eastOnePart
= ~ Attributes | Preferences | Properties
RS Folder Processing ParameterConn Diescription: Compaunds must have parts A
<<Folder>> <<Model>> <<Connection=>
-~ Equation: sell.pats(}rsize » 0
&
<
Primitive Compound
@ <<Model>> <<Model>> |
8 Firing : enum FaramelerBasa
& Script : field AtLeastOnePart <c<Atom>>
= Priority : field
x DataType :enum
Size : field
*
X
) DataflowConn
X Signal
n cehtomss <<Connection=> ‘ ‘
! InputParam Param OutputParam
L p p
<<Atomz= <<Atom== <<Atom==
3 Glabal: bool
Init\Value : fisld
InputSignal QutputSignal
<<Atom>> <<Atom>>
v
-
< >
Ready

10.2.2. Constraint Definitions (Functions)

In GME the former Constraint Function is improved to comply with Constraint Definitions introduced
by OCL 2.0.

110

GME Manua and User Guide

The two attributes of a Constraint Function called Parameter list and Definition are retained and have the
same syntax and functionality.

The expression of the Definition can already return any typenot only ocl : : Bool ean, but it must bethe
same or adescendant of the type specified in the Return type attribute. This attribute can hold only smple
and not compound types. For example: ocl : : Set (gne: : FCO) cannot be written; only ocl : : Set
isvalid.

In order to facilitate the call of a Definition, which does not have any parameters, the Definition's
Sereotype can be set to attribute.

For the time being the Context is an attribute rather than an association, so it must be supplied explicitly.
The intention is that the user will be able to write more generic Constraint Definitions supplying a GME
meta-kind as the Context of the Definition. With this solution the difficulties caused by the inheritance
information lossiseasily solved, because the constraint writer can use the commonalities of different kinds
without casting objects’ type explicitly to the appropriate kinds.

It is good practice to specify the context as a meta-kind or gre: : Pr oj ect if a Constraint Definition
must or can be associated with more than one kind.

The context of the Definition can be accessed assel f . If the Context isgne: : Pr oj ect then self and
project point to the same object (i.e. singleton project object)

Constraint Definitions can be called from other Definitions or Constraints, even being recursive.

Figure 47. deRef constraint definition in the paradigm MetaGME deRef

deRef

Attributes: | Preferences | Properties

Drefinition: it [zelf.ocllskindOf{ gme::Reference)] then
sell oclhsTypel gme:Reference JrefersTol)
else
self
endif

Context: ame::FCO
Returh type: gme::FCO

111

GME Manua and User Guide

Figure48. cropProxy constraint definition in theparadigm MetaGME cr opPr oxy

cropFiory

Attributes: | Preferences | Properties

Parameter list: kind : string
Drefinition: it [kind.size <= 5 1then
kind
else
it [kind. zubstringl kind.size - 5] = "Prasy”) then
kind substingl 0. kind size - 5]
else
kind
endif
endif

Context: ame::Praoject
Returh type: string

10.2.3. Syntax and semantic errors

User defined constraints and constraint definitions may have syntax and semantic errors. Misspelled
keywords, unclosed brackets, missing or superfluous elements in OCL expression lead to syntax errors.
Semantic errors can be invalid or non-existent feature calls, variable redefinitions, wrong or invalid
parameter list, or non- conformant types and so on.

These errors are displayed immediately after the user modifies and leaves one field of the Constraint or
Definition. If it isfully defined the Syntax and Semantic Error Diaog is shown.

Because one constraint can be connected to more than one kind, the dialog enumerates all constraint and
kind pairs. In the list violations can be sorted by Constraint's type, context or name.

Selecting an association, the text of the Constraint is shown on the left of the dialog with al primary errors
(i.e. errors that do not come from other). Choosing an error, the line is selected in the expression window
where the error is detected.

If aconstraint is parsed successfully, then a semantic check is performed. That is the reason why syntax
errors are displayed first (yellow icons). If there are no syntax errors, then semantic errors are shown (red
icons).

112

GME Manua and User Guide

10.2.4.

10.2.5.

Figure 49. Semantic errors in a Constraint Definition called WrongConstraint
W ongConstr ai nt

-

Errors' description :
i The following Constraints and ConstiaintDefinitions have emors.
These Constraints and ConstraintD efinitions cannat be used and evaluated
Type | Contest Mame Line Expression
O FCO “WrongConstraint + 1 gontext FCO iny WiangCaonstraint

2
+ 3 let walue = sellwiong_name in
* 4 self+5="shing"
Code Ln. Message
W08 7 Altrbute [meta:FCO:wiong_name | does not exist
V‘HD ? Agzociation [meta:FCO: wrong_name | does not exist.
%104 4 Operator [operator] +] meta:FCO, ocl:Irteaer)] does not esist

After interpreting a paradigm when a user triesto use the interpreted meta-model (create or open a model)
all constraints and definitions are examined. If errors exist, the appropriate constraints (definitions) will
be disabled and cannot be used. Constraints depending on afailed Definition are not available as well.

Evaluating the constraints

During modeling time the well-formed and valid constraints are used to maintain the model's consistency.

Constraints can be evaluated in several ways. These are the following:

1.

Event-based constraints are evaluated if the appropriate event (i.e. the event that triggers the constraint)
is performed on the objects. These constraints may be evaluated even if they are not associated with
the object, which received the event (see Dept h attribute of | nvar i ant).

. All existing constraints defined by either a library, the model or the paradigm can be evaluated on

demand executing the Tools | Check Constraints | Check All command.

. All constraints associated to the active and opened Model or associated to its immediate and indirect

children can be evaluated on demand executing the Tools | Check Constraints | Check command.
Examining the children may be excluded at the Constraint Browser dialog's Settings page.

. A specific constraint can be evaluated for all objects to which it applies at the Constraint Browser

diaog's Constraints page.

. For a specific object, al constraints can be evaluated at the Constraint Browser dialog's Kinds and

Types page or executing the Constraint | Check command of the context menu of the M odel Browser .

Note

Before interpreting a model it is highly recommended that the user execute the Check All
command because it islikely that the paradigm or alibrary contains pure on-demand constraints
which are evaluated only if the user would like to.

Altering the evaluation process

In GME the user may change some settingsto alter the eval uation process. This can be done by opening the
Constraint Manager’smain dialog (Tools | Display Constraints) and by clicking on the Settings page.

113

GME Manua and User Guide

Figure 50. Settings of the constraint evaluation
f -

Constraints || Kinds and Types | Settings

Short-circuit evaluation

Enable shart-circuit logical operatars
Operators (&, Il =>) can change the evaluation.

Enable shart-circuit predefined iteratars.
Iterators terminates immediatelly after result is available:

Ealuation tracking
Enable racking [i.e. debuging] of evaluation.
Fieporting exceptions, false values retumned by features.

Termination of evaluation
() Evaluation ends after the first violation
() Evaluation ends after the first violated [priority] level
() Evaluation ends after |2 wiolations,

(&) Evaluation ends after all constraints evaluated.

Depth of on demand evaluation [Model iz in focus |
(&) Evaluate only constraints of the Model
() Evaluate the constraints of the Mode!'s children also

() Evaluate the constraints of the Model's nat immediate
children, as well

Cancel

10.2.5.1. Short-circuit evaluation

As OCL is a predicate and query language, during the “execution” of the constraints nothing is altered
in the underlying model. In some cases — for example the model is quite huge and the evaluation would
be time-consuming — logical operators and iterators may be switched to short-circuit mode: if the result
is aready available and the further operation will not modify the model, these features can return earlier.
With these options, the performance may be improved.

10.2.5.2. Evaluation Tracking

If this option is off, constraints' evaluation is not debugged, and only the context and the result (false or
undefined) are shown in the Constraint Violations dialog.

This option may be turned on, if the user would like to test the paradigm (i.e. constraints)
10.2.5.3. Termination of evaluation
With these options the user can manage when the evaluation process must terminate.

If the there were alot of constraints and the model wastoo large, the Check All command would take too
much time. In this case the user can shorten the evaluation to concentrate on the first violations.

10.2.5.4. Depth of on-demand evaluation

If the user wants to evaluate all constraints on the currently selected model, she may choose which
constraints have to be checked. The default isthat the constraints of the model and itsimmediate children
are executed.

10.2.6. Run-time exceptions and constraint violations

If constraints are evaluated they can result int r ue, f al se or undef i ned depending on whether the
constraint is satisfied or not, or during the execution some exceptions were thrown.

114

GME Manua and User Guide

In thetwo latter cases, aViolation Dialog pops up displaying the violations and/or exceptions. The dialog
has two views; in the compact view only one violation is shown in contrast to the detailed view in which
all violations are enumerated at the |eft of the dialog. The user may switch between the views with the
Expand/Collapse button.

Both of the views have the close buttons at the bottom-left corner of the dialog.

» Close button is used to close the dialog simply. If the violation dialog appeared because of an event,
this button means that the user approves the violating modifications at that time.

» Abort isenabled only if at least one event-based and critical (Priority = 1) constraint is not satisfied. In
these cases Close button is disabled to force the user so that she aborts the modification.

Note

If the paradigm isin the testing phase it is recommended that none of the constraints are critical
in order to examine constraints simply.

10.2.6.1. Compact view
In the compact view the most important properties are shown of the current violation.
These are the following:
 Full name — The concatenation of the context name (with namespace) and the constraint name.
* Description — Description of the violation (i.e. the meaning of the constraint)

» Variables — Variables that are defined in the constraint (it always contains the self and the project
variables)

If there are more violations at the same time, then the user can iterate over those violations using the
Previous and Next buttons.

10.2.6.2. Detailed View

In addition to that compact view, the detailed one displays all the information can be gathered during the
evaluation.

Herewe can see all violations at theleft of the dialog. The user can sort the content similarly to the Syntax
and Semantic Errors displaying dialog. The content of the whole dialog is changing according to the
selected item in the list.

At theright we can track and follow the constraint evaluation on a particul ar object regarded as the context
of the constraint. For the time being, in this window we can see only those feature calls that returned
fal se or undefi ned. In lots of cases this information is enough to eliminate the unwanted errors or
to find out where the problem occurred.

Selecting one line in the track window, the Expr ession window and the list showing the defined variables
are updated according to the context of the track line.

Note

At thistime, tracking of the execution of Constraint Definitionsis not available.

10.2.7. Constraints in the model

115

GME Manua and User Guide

10.2.7.1.

10.2.7.2.

Constraints’ types

As GME had introduced the type inheritance concept, it became essential that the user would be able to
attach constraints to types and subtypes similarly to kinds.

In GME the set of the rules expressed by constraints defined in the paradigm may be extended by
constraints defined by the modeler. These constraints can be associated to types, subtypes, even instances
in aspecific way.

If the modeler set the aim to create a model, which will be imported as a library into other models, then
the constraints defined in the imported model become library constraints. The types of constraints are the
following:

Figure51. Iconsfor types of Constraints and Definitions

(B Critical Constraint (in the paradigm)

@ Non.critical G int (in the paradigm)
{3 Critical Constraint (in the model)

{€) Non-critical Constraint (in the model)
{D Critical Constraint (in a library)

4@ Non-critical Constraint (in a library)

{i) Attribute Definition (in the paradigm)

{} Method Definition (in the paradigm)

Constraint Browser

By executing the Tools | Display Constraints command, the user can browse al constraints available
in the model in the page Constraints of the Constraint Browser. The page displays the state (i.e. not
available because of errors, well- formed and valid), the type and the full name for each constraint.

Selecting the items in the list and clicking on the Check button make the user able to evaluate specific
constraint on demand.

Double-clicking on a constraint, the user is able to look at its expression and its other attributes. If the
congtraint is neither a paradigm-constraint nor a library-constraint, its definition can be changed easily
with the exception of the context and the name.

Figure 52. Constraintsin the model

f -

Constraints | Kinds and Types | Settings

O meta; :AND: i CheckConn
FA® meta:NoT:CheckConn
FA@ meta:noT: Checkattr
EA{5 metanCircuit:: Constraink_to_{oR

Add

Check

Cancel

0K

116

GME Manua and User Guide

10.2.7.3. Add and Remove constraints

With the Add and the Remove buttons the user may add and remove constraints from the model. In the
model, constraints cannot be either added or removed from the libraries and the paradigm. Constraint
Definitions can be created only in the paradigm.

Modeler constraints can be specified similarly to a paradigm's constraints. The context can be only kinds
rather than types, subtypes or instances. The set of the objects can be restricted with the constraint enabling
mechanism.

10.2.7.4. Enable and disable constraints

Figure 53. Enable constraints—restrict the context of constraints

0 B

Constraints | Kinds and Types | Settings

“s* RootFolder
% CR
=[5 circuit
EEE meta: Circuit: :Constraint_to_XOR
= D MeswCircuit
O meta:: Circuit: :Constraint_to_XCR.
=0 or
& meta::Circuit: :Constraint_to_XOR
B OR_dinputs
[P meta::Circuit: :Constraint_to_xCR.
OR.
[l meta::Circuit: :Constraint_to_xCR
= XOR
[meta:: Circuit: :Constraint_to_XCR.

+- [s

#- 1 5E PortIo

For each object and constraint pair the user may set a specia enable flag. If the constraint is disabled for
an object, then the constraint will be evaluated on the object only if the user checks it explicitly.

Nevertheless there are some exceptions when the enable flag cannot be changed:

* Critical constraints defined in the paradigm or in alibrary are always enabled.

» Flags cannot be changed for the objectsresiding in alibrary.

The user can change these flags in the Kinds and Types page of the Constraint Browser dialog.

The dialog displays this information in a tree whose root nodes are the kinds. Subnodes of the kinds are
types, subtypes and instances according to the type inheritance chain. Each object and each kind have
subnodes representing the constraints.

Note

In the beginning, the tree contains special iconsinstead of checkboxes. Theseiconsarefor telling
the user that there is no information gathered regarding the kinds. Selecting them or clicking on
the Load All button will cause the information to become available.

117

GME Manua and User Guide

Checkboxes may have different colors. The meaning of the colors are the following:
» Grey —theflagisdisabled

» Cyan —theflag'svalueisinherited, the value isimplicit

e Black —theflag'svalueis set explicitly — not inherited

The checkboxes can enable or disable the constraints in different sort of ranges depending on what kind
of nodes they are reside before.

» Atkinds—enable all constraints for all objects of the kind at the same time (not stored)

At types, subtypesor instances—enableall constraintsfor the specific object at the sametime (not stored)

At constraint subnodes of kinds — enable the specific constraint for al objects of the specific kind.(not
stored)

» At constraint subnodes of objects — enable the specific constraint for the specific object. (stored)

Note

It is likely that the user changes a flag for an object (e.g.: for a type) then the color of the
checkboxes of the descendant objects will change using the advantage of type inheritance in the

registry.
In order to facilitate the context definition the right and left buttons of the mouse can be used:
« Left button — set the flag only for the specific node.

» Right button — set the flag for the specific node and its appropriate subnode according to described
relationships above.

10.2.7.5. Constraints in a library

Constraints residing in a library are the same as the constraints in a model, but according to the library's
definition the constraints are read-only.

Note

If alibrary (i.e. the included model) is changed, it has to be included again into the model after
deletion or refreshed. After including the library the model has to be closed so that its new
constraints will be available for evaluating.

A. OCL and GME

118

GME Manua and User Guide

1. OCL Language

In this section we discuss the standard OCL 1.4 structures and expression can be used in GME. We
summarize al issues which writing constraints in GME based on.

1.1. Type Conformance

OCL, as specified, is a typed language. The types that can be used in OCL are organized in a type
hierarchy. This hierarchy as well asthe type inheritance and special properties of meta-types, correspond
to conformance rules describing if and how atype conforms to another.

These rules include the following:

Common rules

* A type conformsto itself.

» A type conformsto its supertypes (direct, or indirect supertypes)

» A type conformsto its meta-type.

A type conformsto supermeta-types of its meta-type.

Compound meta-type related, additional rules (appliesto Collection, Set, Bag and Sequence)

» A compound type conforms to another compound type, if its contained type conforms to another's
contained type.

Record meta-type related, additional rules (appliesto Tuple)

» A tuple conforms to another tuple, if its contained member types conforms to another's contained
member types, and these members' names are the same.

Paradigm types related, additional rules

» A typedefined in ameta-model (paradigm) conformsto another type fromwhich it isderived. Thisrule
isapplicable if and only if inheritance is defined for these types.

These rules are extended, because the next version of OCL will introduce the feature to access meta-kind
information.

1.2. Context of a Constraint

As we mentioned earlier, an OCL constraint is aways written in the context of a specific type. In this
implementation the type can be only atype defined in the paradigm.

The context is always accessible anywhere in a constraint as a specia variable caled sel f . Thisisalso
areserved keyword of OCL.

A constraint can be evaluated to objects, which are instances of the type of the context. If a constraint
evaluatesto f al se, the object violates the constraint. If a constraint evaluatesto undef i ned, then one
or more exceptions were thrown while the constraint was eval uating.

A constraint can be named. In some circumstances, thisis arequirement rather than an option, in order to
make a distinction between constraints of atype. The constraint's defined name will be the concatenation
of the type of the context and the name of the constraint.

119

GME Manua and User Guide

In thisimplementation each constraint expression hasto have context declaration. The context declaration
differs from constraint type to constraint type.

1.3. Types of Constraints (Expressions)

1.3.1. Invariants

A constraint can be an Invariant. An invariant must be true for all instances of the type of the context at
any time. In the case of invariants, the special variable - sel f - can be renamed; in this case, sel f is
not accessible.

“context” { <contextName> “:” } <typeName> “inv” { <constraintName> } “:”
<expressi on>
e.g.:

context Person inv DontHaveDogs : ...
context p : Person inv :

1.3.2. Pre-conditions

A constraint can be a Pre-condition. A pre-condition can be associated with any behavioral feature. In
order to define the context of the constraint, the user has to specify the name, the parameters, and the
returned type of the feature.

In a pre-condition, the parameters of the feature can be accessed as variables. Although the original OCL
does not allow the renaming of self in pre-conditions, this implementation does allow it.

The names of the parameters must be unique, and cannot be either sel f or the name of the context.

For thetime being, thisconstraint typeisnot fully implemented, because so far it hasnot been arequirement

for GME and UDM.

“context” { <contextNane> “:” } <typeName> “::” <featureName> “(“ {
<paranmName> “:” <paranffype> (“;” <paramName> “:” <paranmlype>)* } “)” { “
<typeName> } “pre“ { <constraintName> } “:” <expression>

e.g.

context Person::GetSalary(nonth : int) : real pre ValidMonth : ...
context p : Person::CheckQut() pre :

1.3.3. Post-conditions

A constraint can be a Post-condition. A post-condition can be associated with any behavioral feature. In
order to define the context of the constraint, the user has to specify the name, the parameters, and the
returned type of the feature.

In a post-condition, the parameters of the feature can be accessed as variables, and the returned value can
be accessed via a special variable called result. Although the original OCL does not allow the renaming
of self in preconditions, thisimplementation does allow it.

The names of the parameters must be unique, and cannot be either self, result or the name of the context.

The specia postfix operator - @r e - may only be used in apost-condition. Thisfeatureisnot implemented

yet.
For thetimebeing, this constraint typeisnot fully implemented, because so far it hasnot been arequirement
for GME and UDM.

“context” { <contextNane> “:” } <typeName> “::” <featureName> “(“ {

120

GME Manua and User Guide

<paranmName> “:” <paranflype> (“;” <paramName> “:” <paranmlype>)* } “)” { “:”
<typeName> } “post“ { <constraintName> } “:” <expression>
e.g.

context Person::GetSalary(nonth : int) : real post ValidSalary :
context p : Person::Checkln() post :

1.3.4. Attribute Definition

This feature of OCL is included here because constraint types must be dealt with in a uniform way.
However, an Attribute Definition is not really a constraint. It can be considered an extension of atypein
the aspect of constraints.

An attribute definition is an attribute of a type that can be accessed only in OCL constraints. It has the
same properties as a well-known attribute. It always has a name and the returned type.

The name must not conflict with other attributes definitions, attributes of the type, or roles and names of
types, which can be accessed through navigation.

“context” <typeName> “::” <attributeName> “:” <typeNane> “defattribute” *
<expr essi on>

e.g.
context Person::friendNames : Set defattribute : ...

1.4. Common OCL Expressions

These expressions are common to every OCL of every meta-paradigm.

AsOCL isaquery language, it is true for al expressions that objects’ states (i.e. values of their member
variables) and not modified. It isalwaystrue that al expressions must return avalue (i.e. an object). OCL
is case-sengitive.

1.4.1. Type casting

AsOCL isatyped language, it isnot allowed to simply call features of an object. A type of the object (and
of course the meta-type) defines the kinds of expressions in which the object can participate.

In most cases, the type of the object in a specific expression is enough to write the expression without type
casting, but there are some circumstances in which it is necessary.

An object always has dynamic and static type in an expression. The static type is known at the time of
writing the expression. The dynamic type is determined at run- time, while the constraint is evaluating.

There are two known situations in which type casting is required:

» The static type of the object differs from the well-known (i.e. dynamic) type of the object. To write
certain expressions, the type must be downcast. This is the case when an expression returns an object,
but its static type is the supertype of the object's dynamic type.

» The type of the objects, overloads or overrides a feature of a supertype in a certain way (e.g. by
inheritance). To access the super type's functionality, the type of the object must be up-cast.

Type casting is defined by the meta-type ocl : : Any. It declares the type cast operator to be a method
caled ocl AsType. This method returns the same object, but with the type it obtains as an argument.

To cast one object's type to ancther, the former type has to conform to the new type (up-casting) or the
new type has to conform to the former type (down-casting). When these types cannot conform, it isatype
conformance error, and an exception isthrown, and undef i ned isreturned.

121

GME Manua and User Guide

The explicit use of ocl AsType is not required, because some expressions have it implicitly (e.g. | et
expressions, and iterators)

1.4.2. Undefined

In OCL 1.4, undef i ned isaspecial object, which cannot be written as literal in this implementation.

During evaluation undef i ned can bereturned if theresult of afeature call isundefined or if an exception
is thrown. These two aspects of undefined must be distinguished in the new version (i.e. undefined isthe
sole instance of ocl : : Gbj ect, and a new type called ocl : : Err or must be introduced in order to
denote exceptions thrown during the evaluation).

In this implementation undef i ned is considered first and foremost as an error. Thus if a feature has
to be performed on or with an object that isundef i ned, then the feature is skipped and undef i ned
is returned (for example: the user cannot perform an attribute call on undef i ned,or if a method gets
undef i ned as argument, then the method is not called).

There are only some features in which undef i ned can participate in (i.e. the result is not always
undefi ned):

e ocl::Any::isUndefined()

e operator[=](ocl::Any , ocl::Any)

e operator[<>](ocl::Any , ocl::Any)

e operator[==](ocl::Any , ocl::Any)

e operator[!=1](ocl::Any , ocl::Any)
 operator[or](ocl::Boolean , ocl::Boolean)

e operator[inplies](ocl::Boolean , ocl::Boolean)

1.4.3. Equality and Identity

Two objectsareidentical if and only if they are stored in the same memory space. Equality of two objects
is defined by the objects’ types or meta-types. It is not absolutely necessary that two objects, which are
equal to each other, areidentical aswell.

Theocl : : Any meta-type defines an operator with which the user can test whether objects’ identitiesare
the same. This operator is available for al types used in OCL expressions.

For objectswith meta-typeocl : : Any (practically only for undef i ned) identity isthe same asequality,
but for any other types we have to make a distinction.

In the OCL specification, there is only one operator with which we can express an equality check. There
isno special one for identity check.

As we mentioned earlier, technically the oper at or = of ocl : : Any is for testing identity, but in a
simple way this operator can only be used for testing equality, because al types override it with a special
meaning of equality.

In some cases we have to test identity definitely, but it is not simple in standard OCL. We have to up-cast
the objects to access the functionality defined by ocl : : Any. Thisiswhy weintroduced a simplification,
operator ==,

122

GME Manua and User Guide

oper at or == (and its negation, oper at or ! =) always tests identity. However oper at or = (and
its negation, oper at or <>) always checks equality (standard OCL).

The following are some examples which return t r ue, assuming that there is a variable var initialized
with 5.

let var = 5in

var. ocl AsType(“ocl::Any”) = var.ocl AsType(“ocl::Any”) -- 1. Standard way
to test identity

var. ocl AsType(“ocl::Any”) == var.ocl AsType(“ocl::Any”) -- 2. Redundant,
conpl ex, but valid expression, same as 1

var == var -- 3. Same as 1, short and

conpact form of 1.

not var != var -- 4. Meaning of operator !I=

var 1= 5 -- 5. Because 5 is stored in

different menory space as var’'s val ue

var =5 -- 6. Equality of integers

not var <> 5 -- 7. Non-equality of

i ntegers

51=5 -- 8. Two fives are in

di fferent nenory spaces

During the evaluation of an OCL expression, none of the objects are altered after they receive avalue (i.e.
they areinitialized). Thisis a consequence of query languages.

In OCL, al features of typesreturn adifferent object (not identical), evenif it is possible for them to return
the same object (identical).

For example, method ocl : : Set: : i ncl udi ng() receives an object, adds it to the set, and returns
a set. The two sets are not identical, but the object which is included in the new set is identical to the
argument of the method, because it was not altered.

We must note here that in al features depending on identity or equality check, equality is always applied.
Wewill indicate explicitly if an identity check isused, or if theidentity of an object is not changed during
the evaluation (i.e. a new object is not created in memory).

1.4.4. Literals

For the time being, two kinds of literals exist: literals of data-types predefined by OCL, and literals of
compound types.

Because basic primitive types are well-known, their literals are discussed through examples.

“string”, “\r\n: <CR><LF>", *“” -- String literals

0.0, -1.0, 5.232, -234.232 -- Real literals (reals are represented

as 64bit long signed floating-point nunbers)

0, -1, 5, 2131 -- Integer literals (integers are

represented as 64bit |ong signed integer nunbers)

#enabl ed, #di sabl ed, #unknown -- Enuneration literals (enuneration val ues
begins with # character)

true, false -- Boolean literals

Compound types' literals are a bit more complex than primitive types' literals. The user has to write the
name of the compound type followed by the list of expressions enclosed by braces (the list can be empty).
Objects returned by the expressions will be the elements of the compound object.

In standard OCL range of object (using oper at or . .) can be specified. In this implementation it is
not supported yet.

Compound types are so far limited to: Col | ecti on, ocl :: Col | ecti on, Set, ocl : : Set, Bag,
ocl : : Bag, Sequence, ocl : : Sequence.

123

GME Manua and User Guide

<conpoundType> “{“ { <expression> (“,” <expression>)* } “}”

e.g.
Sequence{ 0, 1, 2, “23", true }

1.4.5. Let expression

A Let expression performs variable declaration and initialization.

This expression has two parts. The first part declares and initializes the variable, the second part declares
where this variable is accessible. Let expression's return type is the same type as the second expression.

Variables in OCL can be used to make the constraint more readable or to improve the performance of
constraint evaluation. If we want to use aresult of an expression more than once, it is better to compute
the result only once and store it in avariable.

Let expression may have atype declaration, as well.

“let” <variabl eName> { “:“ <declarationType> } “=" <expression> “in”
<expressi on>

e.g. in GVE
| et dogs = persons. connectedFCOs(“src”, “Partners”) in ...

1.4.6. If Then Else Expression

This expression is the well-known “if” feature of languages, with a limitation that it always has an else
branch. Otherwise if the condition is not satisfied, the result would be unknown.

The If expression consists of three expressions:
» The condition which hasto return ocl : : Bool ean or any of its descendants (if they exist).
» Two expressions with the same return type (i.e. then and el se branches)

If the condition evaluates to t r ue, then only the first expression will be evaluated; otherwise, only the
second will be evaluated.

“if” <condition> “then” <expression> “el se” <expression> “endif”

e.g.
if nmySet -> isEnpty() then 0 else nySet -> size endif

1.4.7. lterators

Although Iterator is a special feature defined by ocl : : Conpound meta-type, it is discussed in this
subsection because ocl : : Conpound isdefined by OCL and not by meta-paradigms, and because there
isaspecial, generic iterator called i t er at e. Only ocl : : Col | ect i on and its descendant types have
this feature.

An iterator can be considered to be a cycle, which iterates over the el ements of a compound object while
it evaluates the expression obtained as an argument for each element and returns a value accumulated
during the iteration.

Iterators (may) have:
* A typed expression, which will be evaluated for each element (mandatory).

A return type, which is the type of the accumulated object (mandatory). It is not necessary for this type
isto match the type of the argument.

124

GME Manua and User Guide

» Declarators, which are variables that refer to the current element of the iteration process (optional).
* A declaration type, which is simply an implicit type cast (optional).

These are true only for predefined iterators discussed in a later section.

<expression> “->" <jteratorNanme> “(“ { <declarator> (“,” <declarator>)* {
" <decl arationType> } } “|” <expression> “)”

e.g.
let mySet = Set { “1", “2", “3", “10” } in

mySet -> forAll(eleml, elen2 : int | eleml <> elenR)
mySet -> one(size = 2)

Here we discuss only the generic iterator of OCL calledi t er at e.

I t er at e always has avariable that is regarded as the accumulator of the iteration. The iterator's return
type is the type of the accumulator. The accumulator is always initialized. The expression has to include
the accumulator variable so that the iteration will be meaningful (but it is not required). Iterate may have
exactly one declarator.

| t er at e isthefoundation of al predefined iterator.

<expression> “->" “jterate” “(“ { <declarator> { “:” <declarationType>} “;”
} <accumulator> { “:” <accurul ator Type> } “=" <expression> “|” <expressi on>
wy»
e.g.

let nySet = Set { “17, “2", 3", “10" } in
-- Expressing the functionality of “exists” predefined iterator
nySet -> exists(i | i.size = 2)

nySet -> iterate(i ; accu = false | accu or i.size = 2)

-- Expressing the functionality of “isUnique” predefined iterator

nySet -> isUnique(i | i)

nySet -> forAll(i1, i2 | il!=i2inpliesil<>i2)

nySet -> iterate(il ; accul = true | accul and nySet -> iterate(i2 ; accu2
=true | accu2 and (i1l !=i2 inpliesil<>i2)))

1.5. Type Related Expressions

1.5.1. Operators
In OCL, there are a bunch of operators defined by predefined types.

In both OCL 1.4 and OCL 2.0, logical operators are not defined completely, as the specification does
not define precedence between these operators. This small lack would make writing OCL expressions
more difficult, because the user would have to use parenthesis even if it was not necessary. In this
implementation we define the precedence and the associative rules of operators asthey are defined in well-
known programming languages.

Operators can be overloaded and defined for types of paradigms as well. This extension is adopted from
the C++ language. The overridden operators can be accessed by applying the ocl AsType method of
ocl : : Any. Exceptionsto thisrule are the primary operators (first row of the table below).

The precedence (from the highest to lowest) and associativity are shown in the following table.

125

GME Manua and User Guide

TableA.1.

Operators Associativity
(), re,.,-> Left to right
- (sign) Right to left
* [,div,mod, % L eft to right
+, - Left to right
<, <=,>,>=, =, <> == | = Left to right
not Right to left
and, && Left to right
xor Left to right
or,| | Left to right
i mplies,=> Right to left
In this implementation, we alow short-circuit logical operators (&&, | | , =>). They can be useful when

the user wants to alter the process of the evaluation.

<expressi on> <bi naryQper at or > <expr essi on>
<unar yOper at or > <expr essi on>

e.g.
“This forms” + “ a string”
not person.isRetired()

1.5.2. Functions

Although OCL is based on the object-oriented concept, functions can be defined to make OCL more
convenient.

There are two examplesfor this:
* Wewritemax(a, b) instead of a. max(b). Of course, both forms of these calls are available.

* Inextensions of OCL, it isgood practice to somehow separate the extending features from the standard
ones. Thisissue can be solved very well with functions, though it is not necessary.

Functions may have arguments, which are evaluated before calling the function. Arguments may be
optional, asin many programming languages. Optional arguments can be followed only by other optional
arguments. Arguments omitted in a call are considered to be undef i ned.

There are some predefined functionsin OCL, in particularly for ocl : : Real andocl : : | nt eger.
<functionNane> “(“ { <expression> (“,” <expression>)* } “)”
e.g.

floor(3.14)

1.5.3. Attributes

The simplest features of atype are attributes.

Attributes are defined by the type or by the meta-type. It is also possible that an attribute is not defined by
either type or meta-type, but by a constraint attribute definition.

126

GME Manua and User Guide

Attributes are not typical of predefined types; thereisonly one, caled si ze.

In OCL, depending on the type of the elements, a special feature can be applied to compound objects
which looks like an attribute call. This feature is a shortcut for the special usage of a predefined iterator
(col | ect). Itisintroduced in OCL because of convenience.

We describe it with an example below. These attributes exist if and only if the object contained by the
compound object has them.

<expression> (“.“ | “->") <attributeName>

-- Assuming that there is a Set nySet which consists objects with type Person
(Person has an attribute, called age)

-- The result is the same in both cases (a Bag consisting integers - age of
per sons)

mySet -> collect(person : Person | person.nane)
mySet -> nane

In some circumstances, attributes of the compound object and the contained object are ambiguous. Then
the decision is made (i.e. which attribute is called) depending on the member selection operator.

1.5.4. Methods

Methods are the most generic feature of atype.

A method may have arguments, which are evaluated before calling the method on an object. Arguments
may be optional as in many programming languages. Optional arguments can be followed only bt other
optional arguments. Arguments omitted in acall are considered to be undef i ned.

Methods are defined by the type or by the meta-type. Only those methods, which do not alter the state of
the object can be used in OCL It is aso possible that a method is not defined by either type or meta-type,
but by a constraint method definition.

If a method has only one argument and belongs to a compound object, then it is possible that it will be
ambiguous with a predefined iterator (which does not have any declarators). In this case the member
selection operator will be used to call either the method or the iterator.

<expression> (“.” | “->") <methodName> “(“ { <expression> (“,”
<expression>)* } “)”

e.g.
obj ect. i sUndefined()

1.5.5. Associations

Associations are usualy defined by the types of a paradigm. In OCL associations appear as association-
ends.

The result of navigation over an association depends on the multiplicity of another association-end and
on the ordered stereotype of the association.

If the multiplicity isO. . 1 or 1, the result is one object. Otherwise the result isan ocl : : Sequence or
anocl : : Set depending on whether the association is ordered or not.

The user can navigate from an object to the other side of the association using the role of the association-
end. If the role is missing, then the name of the type at the association-end, starting with a lowercase
character, isused asrole.

127

GME Manua and User Guide

In standard OCL, if a navigation (using role) is ambiguous, then the association-end can be accessed by
the name of the type at the association-end. If the names of the types are ambiguous as well, then this
navigation is not available.

From an association-end, the association class(es) can be accessed using the name of the association class,
starting with a lowercase character. If the association is recursive, then the role of the starting point (i.e.
association-end) has to follow the name of the association class in brackets. If the roles are ambiguous,
then the association classis not accessible.

To navigate from the association class to association-end, the role of the association- end has to be used.
If it is ambiguous, then the name of the type at the association- end must be used. The ambiguity rules
are the same as before. Navigating from the association class always results in one object (a consequence
of the definition of the association class).

Composition is considered to be a special association, but there is no difference in OCL.

In extensions of OCL, it is likely that features defined by meta-types are mapped to specia associations
with special roles.

Theambiguity rules can be eased, by extensions of OCL, but it may |ead to errorsin thoseimplementations,
because they follow the strict rules of OCL.

<expression> “.” <rol eNane>
<expression> “.” <typeName> { “[“ <rol eName> “]” }

Here are some examples to facilitate the understanding of navigation over associations.

Figure A.1. Examplefor associations..
+owner +dogs
0.1 [-

Regarding these parts of a paradigm, the following OCL expression can be written:

Person

+elements [o
o+
BoxContainment | ________ f} 0.1

+container

-- Assuming that “b” is a Box, “bc” is a BoxContai nment
-- |If Box had further association, which has “el enents” or “container” roles,
then these roles could not be used because of anbiguity.

-- Cannot be used in any cases because of recursive containment.

b. box
-- Returns in ocl::Set(Box). If “elements” was missing, that association-
end woul d not be accessible from Box.

b. el ements
-- Returns in Box. If “container” was mssing, that association-end woul d not
be accessi bl e from Box.

b. cont ai ner
-- Cannot be used in any cases because of recursive containment.

b. boxCont ai nrment
-- Returns in ocl::Set(BoxContainnment). If “container” was m ssing, that
associ ati on-cl ass woul d not be accessible from Box as container.

b. boxCont ai nnment [cont ai ner]
-- Returns in BoxContainment. If “elements” was missing, that association-
class woul d not be accessible from Box as el ement.

b. boxCont ai nnent[el ements]
-- Cannot be used in any cases because of recursive containment.

bc. box
-- Returns in Box. If “elements” was mssing, that association-end woul d not
be accessi bl e from BoxCont ai nnment .

128

GME Manua and User Guide

bc. el ements
-- Returns in Box. If “container” was m ssing, that association-end woul d not
be accessi bl e from BoxCont ai nnment .

bc. cont ai ner
-- Assuming that “p” is a Person, “d” is a Dog, “hd” is a HasDog
-- |If Person, Dog, HasDog had further association, which has “owner” or
“dogs” roles, then these roles could not be used because of anbiguity.
-- If these classes have further association between them then the name of
the appropriate classes cannot be used as role
-- If role exists, then the role has to be used to navigate, otherw se the
nanme of class has to be used

Returns in ocl::Set(Dog)
. dogs
. dog
Ret ur ns
. owner
. person
Ret ur ns
. hasDog
Ret ur ns
. hasDog
-- Returns
hd. dogs
hd. dog
-- Returns
hd. owner
hd. per son

n Person

n ocl::Set(HasDog)

o 'T ' ' oo !

n HasDog.

n Dog

n Person

1.5.6.
1.5.7.

1.5.8.

1.6. Resolution Rules

1.6.1. Implicit Variables

In standard OCL, implicit variables are introduced. These variables are similar to thisin C++ or Java, thus
they can be omitted to prevent writing long expressions.

Thevariable of the context —in many cases: sel f —isalwaysimplicit. Other implicit variables are created
by iterators, which do not have any declarators.

Because of this property of thelanguage the resol ution of features(i.e. expressions) gets more complicated.

In an expression all available implicit variables are marked and stored in a sequence. If an expression has
to be regarded as a feature of atype (i.e. attribute, association- end, method, iterator), then all implicit
variables are examined to determine which variable the feature belongs to. This examination starts at the
end of the sequence and goesto the beginning (i.e. the variable declared last is examined first). If afeature
isresolved (evenif it is ambiguous), then resolution is stopped.

-- Assuming that “Person” and “Dog” are defined by the paradigm They have an
associ ation called “HasDog” with roles “owner” and “dogs”

-- Both classes have an attribute called “age”. Person has an attribute

call ed “gender”.

129

GME Manua and User Guide

-- First “age” is resolved as “self.age”, because there is only one inplicit
variable called “sel f”.
-- “dogs” is resolved as “sel f.dogs”, because there is only one inplicit
variable called “sel f”.
-- lterator called “forAll” creates a new inplicit variable. W refers to
that as “iterl”. These variables are not accessible in the expression
directly.
-- “gender” is resolved “sel f.gender”, because “iterl” which is a Dog, does
not have any feature called “gender”.
-- Second and third “age” is resolved as “iterl.age”, because “iterl” is
defined latter than “self”, i.e. the exam nation started with “iterl”.
-- “owner” is resolved as if it had been witten “iterl. owner” where iterl is
an inplicit declarator created by the iterator

context Person inv :

age < 4 inplies dogs -> forAll(if gender = #male then age < 1 el se age <
0.5 endif)

-- Assuming that “Box” is defined by the paradigm Box has a containnent with
roles “container” and “el ements”.

-- Box has a query nethod called “includes” with one argunent with type Box.
-- The exanpl e does not nake sense, it denobnstrates the resolution only.

-- First “elenments” is resolved as “self.elenments”, because there is only one
inmplicit variable called “self”.
-- lterator called “collect” creates a new variable. W refers to that as
“iterl”. These variables are not accessible in the expression directly.
-- Second “elenments” is resolved as “iterl. el enments”, because “iterl”
precedes “self” during the resolution, and it is a Box.
-- Type of “boxes” will be ocl::Bag(ocl::Set(Box)).
-- In the third line “boxes” and “self” are not subject of resolution because
they are known vari abl es.
-- lterator called “forAll” creates a newinplicit variable. W refers to
that as “iterl”. Forner “iterl” exists in the context of “collect” only.
-- First “includes” resolved as “iterl.includes(ocl::Any)", because type of
“iterl” is ocl::Set(Box), and ocl::Set has a nethod called “includes”.
-- lterator called “exists” creates a newinplicit variable. W refers to
that as “iterl”. Forner “iterl” exists in the context of “forAll” only.
-- “one” is resolved as “iterl.one(ocl::Boolean), because type of “iterl”
is ocl::Set(Box), and ocl::Set has an iterator called “one”.
-- The resolved iterator called “one” creates a newinplicit variable. W
refers to that as “iter2”.
-- Second “includes” resolved as “iter2.includes(Box)", because “iter2”
precedes “iterl” and the type of “iter2” is Box.
-- “size” is resolved as “iterl.size”, because the type of “iter2” (Box) does
not have any feature called “size”, but “iterl”.

context Box inv :

| et boxes = self.elements -> collect(iterl.elenments) in

boxes -> forAll(not includes(self)) and boxes -> exists(ong(
includes(self) or size =0))

1.6.2. Expression Resolution

In an OCL expression it is likely that a text can be resolved differently depending on the context (e.g.
declared (implicit) variables, defined types, existing features of types, etc.).

Therules of the resolution are described below. These differ for different sort of texts and expressions.
In the description, we assume that the paradigm is well-formed and valid.

Resolving atext which looks like an identifier:

1. Check whether atype exists whose name is<id>. If thereis such atype, resolution is stopped.

2. Check whether thereisavariable called <id>. If there is such avariable, resolution is stopped.

130

GME Manua and User Guide

3. Check whether an implicit object (implicit variable) has features which can look like <id>.
 If animplicit object has exactly one feature, then resolution is stopped.

« If the object has more features, then resolution is stopped, and an exception is thrown because of
ambiguity caused by features with the same names.

4. Resolution ends and an exception is thrown because <id> cannot be resolved.
Resolving a text which looks like afunction:

1. Check whether there is a function matching <f unct i on>. If there is such a function, resolution is
stopped.

2. Check whether an implicit object (implicit variable) has features which can look like <f unct i on>.
 If animplicit object has exactly one feature, then resolution is stopped.

« If the object has more features, then resolution is stopped, and an exception is thrown because of
ambiguity caused by features with the same signatures.

3. Resolution ends and an exception is thrown because <f unct i on> cannot be resolved.
4.

Resolving an expression which looks like an attribute call:

1. Check whether the object has an attribute called <at t r i but e>.

2. Check whether the object has accessto an association-end whose role (or type considered asrol€) looks
like<attri but e>.

3. If the object comes from an implicit variable:
« If exactly one feature is found, resolution is stopped.

« If more features are found, then resolution is stopped, and an exception is thrown because there are
more features which can be accessed in the same way.

» Resolution ends and an exception is thrown because <at t r i but e> cannot be resolved.
4. If the object comes from an expression (i.e. member selection operator is used)
« If exactly one feature is found, resolution is stopped.

« If two attributes are found (i.e. an attribute of the compound object and an attribute of the contained

objects), then resolution is stopped. If the member selection operator is “.”, then the compound
object's attribute is resolved, otherwise the other attribute is resolved.

« If an attribute and an association-end are found (in this case the object is not compound, because
it cannot have associations), then resolution is stopped and an exception is thrown because of
ambiguity.

» Resolution ends and an exception is thrown because <at t r i but e> cannot be resolved.
Resolving an expression which looks like a method call:

1. Check whether the object has a method which can be called as <net hod>.

131

GME Manua and User Guide

1.6.3.

2. If the object is compound, check whether the object has an iterator which can be called as <net hod>.
3. If the object comes from an implicit variable:
« If exactly one feature is found, the resolution is stopped.

« If more features are found, then the resolution is stopped, and an exception is thrown because there
are more features which can be accessed in the same way.

» Resolution ends and an exception is thrown because <nmet hod> cannot be resolved.
4. If the object comes from an expression (i.e. member selection operator is used)
« If exactly one feature is found, the resolution is stopped.

 If amethod and an iterator are found (in this case the object is compound, because only compound

objects can have iterators), then the resolution is stopped. If the member selection operator is “.”,
then the method is resolved, otherwise the iterator is resolved.

5. Resolution ends and an exception is thrown because <met hod> cannot be resolved.

132

GME Manua and User Guide

2. Predefined OCL Types

For the time being, ocl : : Any is considered to be atype, and further meta-types are not defined. In the
next version these meta-types will be accessible as well as meta-kind information.

The types enumerated below are accessible in all OCL expressions.

2.1.0ocl :: Any

The type ocl : : Any is the supertype of al types used in OCL expressions. Features associated with
ocl : : Any can be used for all types.

Thistype has only oneinstance, whichisundef i ned.

2.1.1. Aliases, Supertypes

Thistype can also be accessed as Any.

2.1.2. Operators

operator[==](anyl : ocl::Any , any2 : ocl::Any) : ocl::Bool ean
operator[=](anyl : ocl::Any , any2 : ocl::Any) : ocl::Bool ean

Returns t rue if any1 is the same as any?2. This equality means identity. any1 or any2 may be
undefi ned. If only one of them is undefi ned, then the result is f al se; if both of them are
undef i ned, theresultist r ue.

operator[!=](anyl : ocl::Any , any2 : ocl::Any) : ocl::Bool ean
operator[<>](anyl : ocl::Any , any2 : ocl::Any) : ocl::Bool ean

Returns t r ue if any1 is not the same as any?2. This equality means identity. any1 or any2 may
be undef i ned. If only one of them is undefi ned, then the result is t r ue; if both of them are
undef i ned, theresultisf al se.

2.1.3. Methods
ocl::Any::ocl|sTypeOf(type : ocl::Type) : ocl::Bool ean

Returnst r ue if any isan instance of t ype.

t ype can be a simple name, but not a compound name. So far this method cannot be used to check
type conformity, “ocl : : Set (ocl : : Any) ” asargument isinvalid, only “ocl : : Set ” isvalid. If the
specified typeisinvalid or if thereisno type having this name, the method throws an exception and returns
undef i ned.

ocl:: Any::oclIsKindO(type : ocl::Type) : ocl::Bool ean

Returns t r ue if any is an instance of type or if any descendants of type. For further information, see
ocl:: Any::ocl|lsTypeO().

ocl:: Any::ocl AsType(type : ocl:: Type)

Thisis actually a static typecast operator. It returns the same object with t ype (i.e. it does not create a
new object, the result isidentical to the object itself).

The object'stype hasto conformto thet ype, or vice-versa. This method can be used to access overridden
and overloaded features defined by ascendants of a type (up- cast), or it can be used for the well-known
down-cast.

133

GME Manua and User Guide

Note

t ype can be asimple name, but a compound name. So far this method cannot be used to check
type conformity, “ocl : : Set (ocl : : Any) " asan argument isinvalid, only “ocl : : Set " is
valid. If the specified typeisinvalid or if there is no type having this name, the method throws
an exception and returnsundef i ned.

ocl :: Any: :isUndefined() : ocl::Bool ean

Returns t r ue if the object is undefi ned. This method can be used to test whether an object is
undef i ned or not, and to handle exceptions thrown by an OCL expression.

2.2.0cl::String

Thetypeocl : : St ri ng represents ASCII strings, as specified in OCL.

2.2.1. Aliases, Supertypes

Thistype can be accessed as st r i ng. Its supertypeisocl : : Any.

2.2.2. Operators
operator[=](stringl : ocl::String , string2 : ocl::String) : ocl::Bool ean
Returnst r ue if st ri ngl isthe same character sequenceasst ri ng2.
operator[<>](stringl : ocl::String , string2 : ocl::String) : ocl::Bool ean
Returnst r ue if st ri ngl isnot the same character sequenceasst ri ng2.
operator[+](stringl : ocl::String , string2 : ocl::String) : ocl::String
Returnsast r i ng that isthe concatenation of st ri ngl and st ri ng2.
operator[<]J(stringl : ocl::String , string2 : ocl::String) : ocl::Bool ean
Returnst r ue if st ri ngl isahead of st ri ng2 inlexicographical ordering.
operator[<=](stringl : ocl::String , string2 : ocl::String) : ocl::Bool ean
Returnst r ue if st ri ngl isahead of or equal to st ri ng2 inlexicographical ordering.
operator[>]J(stringl : ocl::String , string2 : ocl::String) : ocl::Bool ean
Returnst r ue if st ri ng2 isahead of st ri ngl inlexicographical ordering.
operator[>=](stringl : ocl::String , string2 : ocl::String) : ocl::Bool ean

Returnst r ue if st ri ng2 isahead of or equal to st ri ngl inlexicographical ordering.

2.2.3. Attributes
ocl::String::size : ocl::Integer

Returns the length of the string.

2.2.4. Methods

ocl::String::concat(string : ocl::String) : ocl::String

134

GME Manua and User Guide

Returnsast r i ng, whichisthe concatenation of t hi s andst ri ng. Thisisthesameastheoper at or
+.

ocl::String::toUpper() : ocl::String
Returnsast r i ng containing only uppercase characters.
ocl::String::toLower() : ocl::String
Returnsast r i ng containing only lowercase characters.

ocl::String::substring(start : ocl::Integer {, length : ocl::Integer }) :
ocl::String

Returns the sub-string of t hi s beginning at st ar t and having a specified | engt h. If | engt h isnot
specified, the substring continuesto theend of t hi s. If | engt h iszero or negative, an empty st ri ng
is returned. The first position is 0. The result is undef i ned and an exception is thrown if | ower is
less than O.

ocl::String::trinm() : ocl::String

Returnsast r i ng that neither startsnor endswith white-space characters. “\t”, “ “, “\r”, “\t” and characters
“\u0000" to “\u0020" are considered to be white-space.

ocl::String::toReal () : ocl::Rea

Convertst hi s toocl : : Real . If the conversion cannot be performed, then an exception is thrown and
the method returns undef i ned. The method cannot convert strings representing real numbers, but an

exponent.
ocl::String::tolnteger() : ocl::Integer
Convertst hi s toocl : : | nt eger . If the conversion cannot be performed, then an exception isthrown

and the method returns undef i ned. The method cannot convert strings representing integer numbers,
but an exponent.

2.3.0cl :: Enunerati on

Thetypeocl : : Enuner at i on represents types with a discrete and finite value domain.

2.3.1. Aliases, Supertypes
Thistype can be accessed as enum Its supertypeisocl : : Any.

2.3.2. Operators

operator[=](enuml : ocl::Enunmeration , enun? : ocl::Enunmeration) : ocl::Bool ean
Returnst r ue if enuml isthe samevaue asenun®.

operator[<>](enuml : ocl::Enunmeration , enun? : ocl::Enunmeration)
ocl : : Bool ean

Returnst r ue if enunil isnot the same value asenunt.

2.4. 0ocl :: Bool ean

Thetypeocl : : Bool ean representsthe logical type of OCL.

135

GME Manua and User Guide

2.4.1. Aliases, Supertypes

Thistype can be accessed asbool . Its supertypeisocl : : Any.

2.4.2. Operators

operator[=](booll : ocl::Boolean , bool2 : ocl::Boolean) : ocl::Bool ean
Returnst r ue if bool 1 equalsto bool 2.
operator[<>](booll : ocl::Boolean , bool2 : ocl::Boolean) : ocl::Bool ean

Returnst r ue if bool 1 doesnot equal to bool 2.

operator[and](booll : ocl::Boolean , enun? : ocl::Boolean) : ocl::Bool ean
operator[&%](booll : ocl::Boolean , bool2 : ocl::Boolean) : ocl::Bool ean

Returnstrueif bool 1 and bool 2 aret r ue. Returnsundef i ned if bool 1 or bool 2 are undefined.
Operat or && is a short-circuit operator. If bool 1 isf al se or undefi ned, bool 2 will not be
evaluated.

operator[or](booll : ocl::Boolean , enun : ocl::Boolean) : ocl::Bool ean
operator[||](booll : ocl::Boolean , bool2 : ocl::Boolean) : ocl::Bool ean

Returnst r ue if bool 1 orbool 2 aretrue. Returnsundef i ned if bool 1 andbool 2 areundef i ned.
Qperat or || isashort-circuit operator. If bool 1 ist r ue, bool 2 will not be evaluated.

operator[inplies](booll : ocl::Boolean , enun? : ocl::Boolean) : ocl::Bool ean
operator[=>](booll : ocl::Boolean , bool2 : ocl::Boolean) : ocl::Bool ean

Returns t r ue if bool 1 isf al se or if both operands are t r ue. Returns undef i ned if bool 1 or
bool 2 areundefi ned. Oper at or => isashort-circuit operator. If bool 1 isf al se or undefined,
bool 2 will not be evaluated.

operator[not](bool : ocl::Boolean) : ocl::Bool ean

Returnst r ue if bool isf al se. Returnsundef i ned if bool isundef i ned.

2.5. ocl : : Real

Thetypeocl : : Real representsthe mathematical concept of real.

2.5.1. Aliases, Supertypes

Thistype can be accessed asr eal or doubl e. Itssupertypeisocl : : Any.

2.5.2. Operators
operator[=](reall : ocl::Real , real2 : ocl::Real) : ocl::Bool ean
Returnstrueif r eal 1 isequal tor eal 2.
operator[<>](reall : ocl::Real , real2 : ocl::Real) : ocl::Bool ean
Returnstrueif r eal 1 isnot equal tor eal 2.
operator[<](reall : ocl::Real , real2 : ocl::Real) : ocl::Bool ean

Returnstrueif r eal 1 islessthanr eal 2.

136

GME Manua and User Guide

operator[<=](reall : ocl::Real , real2 : ocl::Real) : ocl::Bool ean
Returnstrueif r eal 1 islessthan or equal tor eal 2.

operator[>](reall : ocl::Real , real2 : ocl::Real) : ocl::Bool ean
Returnstrueif r eal 1 isgreater thanr eal 2.

operator[>=](reall : ocl::Real , real2 : ocl::Real) : ocl::Bool ean
Returnstrueif r eal 1 isgreater than or equal tor eal 2.

operator[-]J(real : ocl::Real) : ocl::Real

Returnsar eal whichisthe oppositeof r eal , or 0.0if r eal is0.0.

operator[+]J(reall : ocl::Real , real2 : ocl::Real) : ocl::Real
Returnsar eal whichistheaddition of r eal 1 andr eal 2.

operator[-]J(reall : ocl::Real , real2 : ocl::Real) : ocl::Real
Returnsar eal whichisthesubtractionof real 1 andr eal 2.

operator[* J(reall : ocl::Real , real2 : ocl::Real) : ocl::Real
Returnsar eal whichisthemultiplicationof r eal 1 andr eal 2.

operator[/](reall : ocl::Real , real2 : ocl::Real) : ocl::Real

Returnsr eal 1 divided by r eal 2.

2.5.3. Functions
abs(real : ocl::Real) : ocl::Real
Return the absolute value of r eal .

floor(real : ocl::Real) : ocl::Integer

Returns the largest integer which islessthan or equal tor eal .

round(real : ocl::Real) : ocl::Integer

Returns the closest integer tor eal . If there are two of them, then it returns the largest one.
max(reall : ocl::Real , real2 : ocl::Real) : ocl::Real

Returnsthe maximum of r eal 1 and r eal 2.

mn(reall : ocl::Real , real2 : ocl::Real) : ocl::Real

Returnsthe minimum of r eal 1 and r eal 2.

2.5.4. Methods
ocl::Real ::abs() : ocl::Real
Returns the absolute value of t hi s.

ocl::Real::floor() : ocl::Integer

Returns the largest integer which islessthan or equal tot hi s.

137

GME Manua and User Guide

ocl::Real ::round() : ocl::Integer

Returnsthe closest integer to t hi s. If there are two of them, then it returns the largest one.
ocl::Real::max(real : ocl::Real) : ocl::Rea

Returns the maximumof t hi s andr eal .

ocl::Real::mn(real : ocl::Real) : ocl::Rea

Returnsthe minimum of t hi s andr eal .

2.6.ocl :: I nteger

Thetypeocl : : | nt eger representsthe mathematical concept of integer.

2.6.1. Aliases, Supertypes

Thistype can be accessed asi nt or | ong. Itssupertypeisocl : : Real .

2.6.2. Operators
operator[=](intl : ocl::Integer , int2 : ocl::Integer) : ocl::Bool ean
Returnst rue if i nt 1 isequal toi nt 2.
operator[<>](intl : ocl::Integer , int2 : ocl::Integer) : ocl::Bool ean
Returnst rue if i nt 1 isnot equal toi nt 2.
operator[<]J(intl : ocl::Integer , int2 : ocl::Integer) : ocl::Bool ean
Returnst rue if i nt 1 islessthani nt 2.
operator[<=](intl : ocl::Integer , int2 : ocl::Integer) : ocl::Bool ean
Returnst r ue if i nt 1 islessthan or equal toi nt 2.
operator[>]J(intl : ocl::Integer , int2 : ocl::Integer) : ocl::Bool ean
Returnst r ue if i nt 1 isgreater thani nt 2.
operator[>=](intl : ocl::Integer , int2 : ocl::Integer) : ocl::Bool ean
Returnst r ue if i nt 1 isgreater than or equal toi nt 2.
operator[- J(int : ocl::Integer) : ocl::Integer
Returns an integer which isthe opposite of i nt, or Qif i nt isO.
operator[+]J(intl : ocl::Integer , int2 : ocl::Integer) : ocl::Integer
Returns an integer which isthe addition of i nt 1 andi nt 2.
operator[- J(intl : ocl::Integer , int2 : ocl::Integer) : ocl::Integer
Returns an integer which isthe subtraction of i nt 1 andi nt 2.
operator[* J(intl : ocl::Integer , int2 : ocl::Integer) : ocl::Integer
Returns an integer which isthe multiplication of i nt 1 andi nt 2.

operator[div J(intl : ocl::Integer , int2 : ocl::Integer) : ocl::Integer

138

GME Manua and User Guide

Returns the number of timesthat i nt 2 fits completely withini nt 1.
operator[nmod J(intl : ocl::Integer , int2 : ocl::Integer) : ocl::I|nteger

Returnsthemodulo of i nt 1 and i nt 2.

2.6.3. Functions
abs(int : ocl::Integer) : ocl::Integer
Returns the absolute value of i nt .
max(intl : ocl::Integer , int2 : ocl::Integer) : ocl::Integer
Returns the maximum of i nt 1 andi nt 2.
mn(intl: ocl::Integer , int2 : ocl::Integer) : ocl::Integer

Returnsthe minimum of i nt 1 andi nt 2.

2.6.4. Methods
ocl::Integer::abs() : ocl::Integer
Returns the absolute value of t hi s.
ocl::Integer::max(int : ocl::Integer) : ocl::Integer
Returns the maximum of t hi s andi nt .
ocl::Integer::mn(int : ocl::Integer) : ocl::Integer

Returnsthe minimumof t hi s andi nt .

2.7.0cl ::Type

Thetypeocl : : Type represents the types and the meta-types used in an OCL expression. For the time
being, thistype does not have features (e.g. enumerating the attribute of the type), but this type will be the
foundation of obtaining meta-kind information in OCL. At the moment, it is used only to refer to types,
and meta-types with strings.

2.7.1. Aliases, Supertypes

Thistype can be accessed as Ty pe. Its supertypeisocl : : Any.

2.7.2. Operators
operator[=](typel : ocl::Type , type2 : ocl::Type) : ocl::Bool ean
Returnst r ue if t ypel isequal tot ype2.
operator[<>](typel : ocl::Type , type2 : ocl::Type) : ocl::Bool ean

Returnst rue if t ypel isnot equal tot ype2.

2.8.0cl::Coll ection

The type ocl :: Col | ecti on represents the supertype of ocl:: Set, ocl:: Sequence and
ocl :: Bag.

139

GME Manua and User Guide

2.8.1. Aliases, Supertypes

Thistype can be accessed as Col | ect i on. Itssupertypeisocl : : Any.

2.8.2. Attributes

ocl::Collection::size : ocl::Integer

Returns the number of elementsin the collection.

2.8.3. Methods

There are methods which depend on the equality. In these methods, equality is used rather than identity.

Some methods return different types depending on the context. For example, if theuser includesar eal in
acollection containing i nt eger s, then the method returns a collection of r eal s, because the common
ascendant type of ocl : : Real andocl :: I nteger isocl : : Real . This effect comesfrom OCL 1.4
inconsistency. In OCL 2.0, this aspect of collectionsis better defined.

ocl::Collection::isEmpty() : ocl::Boolean

Returnst r ue if the collection does not contain any elements.

ocl:: Collection::notEmpty() : ocl::Bool ean

Returnst r ue if the collection contains at least one element.
ocl::Collection::includes(any : ocl::Any) : ocl::Bool ean

Returnst r ue if the collection containsany.

ocl::Collection::excludes(any : ocl::Any) : ocl::Bool ean

Returnst r ue if the collection does not contain any.

ocl::Collection::count(any : ocl::Any) : ocl::Integer

Returns the number of timesthat any occursin the collection.
ocl::Collection::includesAll(collection : ocl::Collection) : ocl::Bool ean
Returnst r ue if the collection contains al elements of col | ecti on.
ocl::Collection::excludesAll(collection : ocl::Collection) : ocl::Bool ean
Returnst r ue if the collection does not contain any elementsof col | ecti on.
ocl::Collection::sum) : <innerType>

This method is not implemented yet. It returns the sum of al elements of the collection. Operator + must
be defined between each element.

ocl::Collection::asSet() : ocl:: Set

Returns a set which contains the same elements as the collection, without multiplicity. If the collectionis
an instance of ocl::Set, then the method returns the set itself without creating a new set.

ocl:: Col |l ection::asSequence() : ocl::Sequence

Returns a sequence which contains the same elements as the collection. The order of the elementsin the
returned sequence is indefinite. If the collection is an instance of ocl::Sequence, then the method returns
the sequence itself without creating a new sequence.

140

GME Manua and User Guide

ocl::Collection::asBag() : ocl::Bag

Returns a bag which contains the same elements as the collection. If the collection is an instance of
ocl::Bag, then the method returns the bag itself without creating a new bag.

2.8.4. lterators

ocl::Collection::exists(bool Expr : ocl::Boolean) : ocl::Bool ean

Returns t r ue if bool Expr evaluates to true for a least one element of the collection. Returns
undefinedif bool Expr evaluatesto undefined for all elementsof the collection. If thecollectionisempty,
it returns false.

ocl::Collection::forAlI(bool Expr : ocl::Boolean) : ocl::Bool ean

Returnst r ue if bool Expr evaluatestot r ue for all element of the collection. Returns undefined if
bool Expr evauates to undefined for at least one element of the collection. If the collection is empty,
it returnst r ue.

ocl:: Collection::isUnique(anyExpr : ocl::Any) : ocl::Bool ean
Returnst r ue if anyExpr evaluatesto a different value for each element of the collection.
ocl::Collection::any(bool Expr : ocl::Boolean) : <innerType>

Returns any element of the collection for which bool Expr evaluatestot r ue. If thereis more than one
element than one in the collection for which the condition is fulfilled, then one of them will be returned.
If there are no elements, then undefined is returned.

ocl:: Collection::one(bool Expr : ocl::Boolean) : ocl::Bool ean
Returnst r ue if the collection contains exactly one element for which bool Expr evaluatestot r ue.
ocl::Collection::sortedBy(anyExpr : ocl::Any) : ocl::Sequence

Thisiterator is not implemented yet. OCL 1.4 specification has mistyped information about this iterator.
It returns a sequence which contains all elements of the collection, where the order of the elements is
determined by the value returned by any Expr for the element.

2.9.ocl : : Set

Thetypeocl : : Set represents the mathematical concept of set.

2.9.1. Aliases, Supertypes

Thistype can be accessed as Set. Its supertypeis ocl::Collection.

2.9.2. Operators

operator[=](setl : ocl::Set , set2 : ocl::Set) : ocl::Bool ean

Returnst r ue if thesize of set 1 and set 2 arethe same, and set 1 contains all elements of set 2, and
set 2 contains al elementsof set 1.

operator[<>](setl : ocl::Set , set2 : ocl::Set) : ocl::Bool ean

Returnst r ue if thesizeof set 1 and set 2 are not the same, or set 1 contains at |east one element that
set 2 doesnot, or set 1 contains at |east one element that set 2 does not.

operator[+]J(setl : ocl::Set , set2 : ocl::Set) : ocl:: Set

141

GME Manua and User Guide

operator[+]J(set : ocl::Set , bag : ocl::Bag) : ocl::Bag

Returnsthe union of set 1 and set 2, or set and bag.

operator[-]J(set : ocl::Set , collection : ocl::Collection) : ocl::Set
Returnsaset , which contains all elements that are contained inset but notincol | ecti on.

operator[*]J(setl : ocl::Set , set2 : ocl::Set) : ocl:: Set
operator[*]J(set : ocl::Set , bag : ocl::Bag) : ocl:: Set

Returnsthe intersection of set 1 and set 2, or set and bag.
operator[%](setl : ocl::Set , set2 : ocl::Set) : ocl::Set

Returnsaset which contains all elements that are contained by only set 1 or set 2.

2.9.3. Methods

ocl::Set::union(set : ocl::Set) : ocl:: Set
ocl::Set::union(bag : ocl::Bag) : ocl::Bag

Returns the union of theset and set or bag.
ocl::Set::subtract(collection : ocl::Collection) : ocl:: Set
Returnsaset which contains all elementsthat are contained in set but notincol | ecti on.

ocl::Set::intersection(set : ocl::Set) : ocl:: Set
ocl::Set::intersection(bag : ocl::Bag) : ocl:: Set

Returnsthe intersection of theset and set or bag.

ocl::Set::symetricDi fference(set : ocl::Set) : ocl:: Set

Returnsaset which contains all elements that are contained by only the set or set.
ocl::Set::including(any : ocl::Any) : ocl:: Set

Returnsaset containing any.

ocl::Set::excluding(any : ocl::Any) : ocl:: Set

Returnsaset not containing any.

2.10. ocl : : Bag

2.10.1.

2.10.2.

Thetypeocl : : Bag represents the mathematical concept of multi-set (set containing elements multiple
times).

Aliases, Supertypes
Thistype can be accessed as bag. Its supertypeisocl : : Col | ecti on.
Operators

operator[=](bagl : ocl::Bag , bag2 : ocl::Bag) : ocl::Bool ean

Returnst r ue if the size of bagl and bag2 are the same, and bag1 contains al elements of bag2 with
the same counts, and bag2 contains all elements of bagl1 with the same counts.

operator[<>](bag : ocl::Bag , collection : ocl::Collection) : ocl::Bool ean

142

GME Manua and User Guide

2.10.3.

2.10.4.

Returns t r ue if the size of bagl and bag?2 are not the same or bagl does not contain all elements of
bag2 with the same counts, or bag2 does not contain all elements of bag1 with the same counts.

operator[+](bag : ocl::Bag , set : ocl::Set) : ocl::Set
operator[+](bagl : ocl::Bag , bag2 : ocl::Bag) : ocl::Bag

Returns the union of bag and set , or bagl and bag?2.

operator[*](bag : ocl::Bag , set : ocl::Set) : ocl:: Set
operator[*](bagl : ocl::Bag , bag2 : ocl::Bag) : ocl::Bag

Returns the intersection of bag and set , or bag1 and bag?2.

Methods

ocl::Bag::union(set : ocl::Set) : ocl::Bag
ocl::Bag::union(bag : ocl::Bag) : ocl::Bag

Returns the union of the bag and set or bag.

ocl::Bag::intersection(set : ocl::Set) : ocl:: Set
ocl::Bag::intersection(bag : ocl::Bag) : ocl::Bag

Returns the intersection of the bag and set or bag.
ocl::Bag::including(any : ocl::Any) : ocl::Bag
Returnsabag containing any.

ocl ::Bag: :excluding(any : ocl::Any) : ocl::Bag

Returnsabag not containing elements which equal to any.

lterators

ocl :: Bag: : sel ect (bool Expr : ocl::Boolean) : ocl::Bag

Returnsabag containing all elements of the bag for which bool Expr evaluatedtot r ue.
ocl::Bag::reject(bool Expr : ocl::Boolean) : ocl::Bag

Returnsabag containing all elements of the bag for which bool Expr evaluated to false.
ocl::Bag::collect(anyExpr : ocl::Any) : ocl::Bag

Returns abag containing values which are returned by any Expr applied to each element of the bag.

2.11. ocl : : Sequence

2.11.1.

2.11.2.

The type ocl::Sequence represents the mathematical concept of sequence.
Aliases, Supertypes
Thistype can be accessed as Sequence. Its supertypeis ocl::Collection.

Operators

operator[=](sequencel : ocl::Sequence , sequence2 : ocl::Sequence) : ocl::Bool ean

Returns t r ue if the size of sequencel and sequence?2 are the same, and if at each position the
elements are equals to each other.

143

GME Manua and User Guide

2.11.3.

operator|[<>](sequencel : ocl::Sequence , sequence2 : ocl::Sequence) : ocl::Bool ean

Returnst r ue if sizeof sequencel and sequence?2 arenot the same, or if at least one position exists
in which elements are not equal.

operator[+](sequencel : ocl::Sequence , sequence2 : ocl::Sequence) : ocl::Sequence

Returns the concatenation of sequencel and sequence?2.

Methods

ocl :: Sequence: : uni on(sequence : ocl::Sequence) : ocl:: Sequence
Returns the concatenation of the sequence and sequence.

ocl : : Sequence: : append(any : ocl::Any) : ocl::Sequence
Returnsthe sequence whose last element isany.

ocl :: Sequence: : prepend(any : ocl::Any) : ocl::Sequence
Returnsthe sequence whose first element isany.

ocl :: Sequence::first() : <innerType>

Returnsthe first element of the sequence. If the sequence is empty, an exception is thrown and undefined
isreturned.

ocl :: Sequence: :last() : <innerType>

Returns the last element of the sequence. If the sequence is empty, an exception is thrown and undefined
isreturned.

ocl ::Sequence::at(pos : ocl::Integer) : <innerType>

Returnsthe element at the position pos of the sequence. If posislessthan O, or if it is greater than or equal
to the size of the sequence, an exception is thrown and the result is undefined.

ocl :: Sequence: :insertAt(pos : ocl::Integer , any : ocl::Any) : ocl:: Sequence

Returns the sequence which contains any at position pos. If posisless than O, or if it is greater than or
equal to the size of the sequence, an exception is thrown and the result is undefined.

ocl :: Sequence: :indexOf(any : ocl::Any) : ocl::Integer

Returns the first position of the sequence where any is found. If there is no element, which equals to
any, then return —1.

ocl :: Sequence: : subSequence(lower : ocl::Integer {, upper : ocl::Integer }) :
ocl :: Sequence

Returns the sub-sequence of the sequence starting at position lower up to position upper, if upper is
specified; otherwise, up to the end of the sequence. The first position is 0. Returns undefined and an
exception is thrown if lower is less than O, lower greater than upper, or if lower or upper are equal to or
greater than the size of the sequence.

ocl :: Sequence: :including(any : ocl::Any) : ocl::Sequence
Returnsasequence containing any, the position of insertion isindefinite.
ocl :: Sequence: : excl uding(any : ocl::Any) : ocl::Sequence

Returns asequence which does not contain any objects which are equal to any.

144

GME Manua and User Guide

2.11.4. Iterators
ocl : : Sequence: : sel ect (bool Expr : ocl::Boolean) : ocl::Sequence
Returnsasequence containing all elements for which bool Expr evaluatedtot r ue.
ocl : : Sequence: :rej ect (bool Expr : ocl::Boolean) : ocl::Sequence
Returnsasequence containing all elements for which bool Expr evaluated to false.
ocl : : Sequence: : col l ect (anyExpr : ocl::Any) : ocl::Sequence

Returns a sequence containing elements which are returned by any Expr applied to each element of
the sequence.

145

GME Manua and User Guide

3. GME Kinds and Meta-Kinds

This section discussesthe meta-kindsand predefined kinds of GME, and all featuresare describedin detail.
Features, which are already deprecated, are marked with (D).

All features throw an exception if the object is null.
3.1. gne: : (bj ect

The meta-kind ocl : : Obj ect isthe super-meta-kind of all meta-kinds of GME. It can be contained by
folders.

3.1.1. Aliases, Super-Meta-Kind

This meta-kind can also be accessed as hj ect .

3.1.2. Operators
operator[=](objectl : gme::Object , object : gne::Cbject) : ocl::Bool ean

Returnst r ue if obj ect 1 isthe same as obj ect 2. This equality means that the objects' 1Ds are the
same.

operator[<>](objectl : gne::(Object , object : gnme::Cbject) : ocl::Boolean

Returnst r ue if obj ect 1 isnot the sameasobj ect 2. Thisinequality means that the objects’ IDs are
different.

3.1.3. Attributes
gne:: oject::nane : ocl::String
Returns the name of the object.
gne: : oj ect:: kindName : ocl::String
Returns the name of the kind of the object.
gne: : Qoj ect:: met aKi ndNane : ocl::String

Returns the name of the meta-kind of the object.

3.1.4. Methods
gne:: Object::name() : ocl::String (D)
This method has the same functionality asthegne: : Obj ect : : nane attribute.
gne: : wj ect::kindName() : ocl::String (D
This method has the same functionality asthegme: : Qbj ect : : ki ndNane attribute.
gne:: Cbject::parent() : gme:: Obj ect

Returns the parent of the object. The result can be an object whose dynamic meta- kind is either
gne: : Fol der or gne: : Mbdel . Returnsnul | if the object isthe root folder of the project.

gne::oject::isNull() : ocl::Bool ean

146

GME Manua and User Guide

Returnst r ue if theobjectisnul | . InGME nul | isdiffersfrom undefi ned.

gne:: oject::isFCO) : ocl::Bool ean

Returnstrue if the meta-kind of the object isgre: : FCOor any descendant meta-kinds.
gme: : oj ect::isFolder() : ocl::Bool ean

Returnstrue if the meta-kind of the object isgre: : Fol der.

3.2. gne: : Fol der

The meta-kind grre: : Fol der represents afolder. A folder may contain objects which have meta-kind
gne: : oj ect .

3.2.1. Aliases, Super-Meta-Kind

This meta-kind can also be accessed as Fol der . Its super-meta-kind isgne: : Qbj ect .

3.2.2. Method

gme: : Fol der::folders() : ocl::Set(gme::Fol der)

Returnsaset which contains al folders recursively contained by the folder.
gne: : Fol der:: childFolders() : ocl::Set(gne::Fol der)
Returnsaset which contains all folders contained by the folder.

gne: : Fol der: :root Descendants() : ocl::Set(gme::FCO)

Returnsaset which contains all fcos which are either root objects in the folder or in all folders that the
folder contains recursively.

gne: : Folder::rootChildren() : ocl::Set(gne::FCO)
Returnsaset which contains all fcos which are root objects of the folder.

gre: : Fol der::nmodels({ kind : ocl::String }) : ocl::Set(gnme::Mdel) (D)
gme: : Fol der::nodels({ kind : ocl::Type }) : ocl::Set(gme::Mdel)

Returnsaset which contains all models contained by the folder or by any child folder or model that the
folder containsrecursively. If ki nd isspecified, then the set returned will contain objectswith kind ki nd.

If thekind of ki nd (i.e.themeta-kind) isnotgme: : Mbdel , thenanexceptionisthrownandundef i ned
is returned.

gne::Folder::atons({ kind : ocl::String }) : ocl::Set(gme::Atom) (D)
gne:: Folder::atons({ kind : ocl::Type }) : ocl::Set(gme::Atom)

Returnsaset which contains all atoms contained by the folder, or by any child folder or model that the
folder containsrecursively. If ki nd isspecified, then the set returned will contain objectswith kind ki nd.

If thekind of ki nd (i.e. themeta-kind) isnot gnme: : At om then an exceptionisthrownandundef i ned
isreturned.

3.3. gne: : FCO

Themeta-kindgne: : FCOrepresentsafirst classobject. gne: : FCOcan becontained by agme: : Model
or agne: : Fol der, be associated to any gne: : FCO, inherit properties by either standard or interface

147

GME Manua and User Guide

or implementation inheritance (only in time of meta- modeling), have attributes, be contained by a
gne: : Set , and last but not least be referred by agne: : Ref er ence.

3.3.1. Aliases, Super-Meta-Type

This meta-kind can also be accessed as FCO. Its super-meta-kind isgne: : Cbj ect .

3.3.2. Attributes

gne: : FCO :rol eNane : ocl::String

Returns the name of the role of the fco, which is contained by a model.

3.3.3. Methods
gne: :FCO :roleNane() : ocl::String (D)
This method has the same functionality asgne: : FCQO : r ol eNarre.

gne: : FCO : connected({ role : ocl::String {, kind : ocl::String } }) :
ocl::Set(gme::FCO) (D

gne: : FCO : connectedFCOs({ role : ocl::String {, kind : ocl::String } }) :
ocl::Set(gme::FCO) (D

gne: : FCO : connectedFCOs({ role : ocl::String {, kind : ocl::Type } }) :
ocl::Set(gme::FCO)

gne: : FCO : connect edFCOs(kind : ocl::Type) : ocl::Set(gme::FCO)

gne: : FCO : bagConnect edFCOs({ role : ocl::String {, kind : ocl::Type } }) :
ocl ::Bag(gme:: FCO)

gne: : FCO : bagConnect edFCOs(kind : ocl::Type) : ocl::Bag(gne::FCO)

Returnsaset or abag which contains all fcos that are associated with the fco. If role is specified, then
it returns only those, which have the same role in the link. If ki nd is specified, the kind of connections
must be ki nd.

If the kind of ki nd (i.e. the meta-kind) is not gne: : Connect i on, then an exception is thrown and
undef i ned isreturned.

gne: : FCO : connectedAs({ role : ocl::String {, kind : ocl::String } }) :
ocl::Set(gme::FCO) (D

gne: : FCO : reverseConnect edFCOs({ role : ocl::String {, kind : ocl::String } }) :
ocl::Set(gme::FCO) (D

gne: : FCO :reverseConnect edFCOs({ role : ocl::String {, kind : ocl::Type } }) :
ocl::Set(gme::FCO)

gne: : FCO : rever seConnect edFCOs(kind : ocl::Type) : ocl::Set(gme::FCO)

gne: : FCO : bagRever seConnect edFCOs({ role : ocl::String {, kind : ocl::Type } }) :
ocl ::Bag(gne:: FCO)

gne: : FCO : bagRever seConnect edFCOs(kind : ocl::Type) : ocl::Bag(gne::FCO)

Returnsaset or abag which containsall fcosthat are associated with thisfco. If r ol e isspecified, then
only the links in which the fco takes part as role are regarded. If kind is specified, the kind of connections
must be kind.

If the kind of ki nd (i.e. the meta-kind) is not gme::Connection, then an exception is thrown and
undef i ned isreturned.

gne: : FCO : attachi ngConnPoints ({ role : ocl::String {, kind : ocl::String } }) :
ocl ::Set(gme:: ConnectionPoint) (D)

gne: : FCO : attachi ngConnPoints ({ role : ocl::String {, kind : ocl::Type } }) :

ocl :: Set(gme:: ConnectionPoint)

gne: : FCO : attachi ngConnPoints (kind : ocl::Type) : ocl::Set(gme:: ConnectionPoint)

148

GME Manua and User Guide

Returns a set which contains all connection points (association ends) of the fco. If r ol e is specified,
then the role of the connection point has to match r ol e. If ki nd is specified, the kind of connections
must be ki nd.

If the kind of ki nd (i.e. the meta-kind) is not gnme: : Connect i on, then an exception is thrown and
undef i ned isreturned.

gne: : FCO : attachi ngConnections ({ role : ocl::String {, kind : ocl::String } }) :
ocl::Set(gne::Connection) (D)

gne: : FCO : attachi ngConnections ({ role : ocl::String {, kind : ocl::Type } }) :
ocl ::Set(gne:: Connection)

gne: : FCO : attachi ngConnections (kind : ocl::Type) : ocl::Set(gne::Connection)

Returns aset which contains all connections (instances of association class) that is alink of the fco. If
r ol e isspecified, then the role of the connection point in the side of the fco hasto match r ol e. If ki nd
is specified, the kind of the regarded connections must be ki nd.

If the kind of ki nd (i.e. the meta-kind) is not gne: : Connect i on, then an exception is thrown and
undef i ned isreturned.

gne: : FCO :i sConnectedTo (fco : gne::FCO{, role : ocl::String {, kind :

ocl::String } }) : ocl::Boolean (D)

gne: : FCO :i sConnectedTo (fco : gne::FCO {, role : ocl::String {, kind :

ocl::Type } }) : ocl::Bool ean

gne: : FCO :i sConnectedTo (fco : gme::FCO kind : ocl::Type) : ocl::Bool ean

Returnst r ue if f co isconnected to thefco. If r ol e isspecified, then therole of fco hasto matchr ol e.
If ki nd is specified, the kind of regarded connections must be ki nd.

If the kind of ki nd (i.e. the meta-kind) is not grme: : Connect i on, then an exception is thrown and
undef i ned isreturned.

gne: : FCO : subTypes() : ocl::Set(gne::FCO)

Returnsaset which contains all fcos that are subtypes of the fco. Returns an empty set if the fco is not
atype.

gme: : FCO :instances() : ocl::Set(gme::FCO)

Returnsaset which contains all fcos that are instances of this fco as atype. Returns an empty set if the
fco isan instance.

gne:: FCO :type() : gne::FCO

Returnsthet ype of thisfco.

gne: : FCO : baseType() : gme:: FCO

Returns the base type of thisfco.

gne: : FCO :isType() : ocl::Bool ean

Returnst r ue if thefcoisat ype.

gne: : FCO :islnstance() : ocl::Bool ean

Returnst r ue if the fco is not atype, in which case it would be an instance.
gne: : FCO :folder() : gne:: Fol der

Returns the closest folder which contains this fco recursively over models.

gne: : FCO :referencedBy({ kind : ocl::String }) : ocl::Set(gme::Reference) (D

149

GME Manua and User Guide

gne: : FCO :referencedBy({ kind : ocl::Type }) : ocl::Set(gne::Reference)

Returnsaset of r ef er enceswhich refer to thisfco. If ki nd is specified, then only those references
whose kind iski nd will be returned.

If the kind of ki nd (i.e. the meta-kind) is not gne: : Ref er ence, then an exception is thrown and
undef i ned isreturned.

gne: : FCO : nenberOfF Sets({ kind : ocl::String }) : ocl::Set(gne::Set) (D
gne: : FCO : nenber O Sets({ kind : ocl::Type }) : ocl::Set(gne::Set)

Returnsaset of set sof GME that containsthis fco. If ki nd is specified, then only those sets of GME
whose kind iski nd will be returned.

If thekind of ki nd (i.e. the meta-kind) isnot grre: : Set , then an exception isthrown and undef i ned
isreturned.

3.4. gne: : Connecti on

The meta-kind gne: : Connect i on corresponds to the well known UML meta-type called Association
Class.

3.4.1. Aliases, Super-Meta-Type

This meta-kind can also be accessed as Connect i on. Its super-meta-kind isgne: : FCO.

3.4.2. Methods

gre: : Connection::connectionPoints({ role : ocl::String }) :
ocl :: Set(gne:: ConnectionPoint)
gne: : Connection::connectionPoint(role : ocl::String) : gme:: ConnectionPoi nt

Thefirst call returnsaset of connection points (association ends) of the connection. If r ol e isspecified,
then the role of the points hasto match r ol e. The second call ease the access only one connection point.

3.5. gne: : Ref erence

The meta-kind gne: : Ref er ence isaspecia meta-kind of GME. It can be considered to be a pointer
to an fco.

3.5.1. Aliases, Super-Meta-Type

This meta-kind can also be accessed as Ref er ence. Its super-meta-kind isgne: : FCO.

3.5.2. Methods

gre: : Ref erence: : usedByConnPoints({ kind : ocl::String }) :
ocl :: Set(gme:: ConnectionPoint) (D)

gre: : Ref erence: : usedByConnPoi nts({ kind : ocl::Type }) :
ocl :: Set (gme:: ConnectionPoint)

Returnsaset of connection points (association ends) of the reference in which the reference participates.
With kind, we can filter those points which are only parts of connections having the same kind.

If the kind of ki nd (i.e. the meta-kind) is not gne: : Ref er ence, then an exception is thrown and
undef i ned isreturned.

150

GME Manua and User Guide

gne: : Reference: :refersTo() : gne:: FCO

Returns the fco to which the reference refers. The return object can be nul | if the reference points to
nul | .

3.6. gne: : Set

The meta-kind gne: : Set corresponds to a set which can contains fcos.

3.6.1. Aliases, Super-Meta-Type

This meta-kind can also be accessed as Set . Its super-meta-kind isgne: : FCO.

3.6.2. Methods

gne: : Connection:: menbers() : ocl::Set(gne::FCO)

Returnsaset of fcosthat are contained by the set of GME.

3.7.gne: : Atom

The metackind grre: : At omis the meta-kind of those objects which are not abstract and have no more
featuresthan gnre: : FCO.

3.7.1. Aliases, Super-Meta-Type

This meta-kind can also be accessed as At om Its super-meta-kind isgne: : FCO.

3.8. gne: : Model

The meta-kind grre: : Model isthe abstraction of containers which can contain fcos.

3.8.1. Aliases, Super-Meta-Type

This meta-kind can also be accessed as Model . Its super-meta-kind isgrre: : FCO.

3.8.2. Methods

gne: : Model ::atonParts({ role : ocl::String }) : ocl::Set(gne::Atom)

gne: : Model : : nodel Parts({ role : ocl::String }) : ocl::Set(gne::Mdel)

gne: : Model : : connectionParts({ role : ocl::String }) : ocl::Set(gne::Connection)
gne: : Model : :referenceParts({ role : ocl::String }) : ocl::Set(gne::Reference)
gne: : Model ::setParts({ role : ocl::String }) : ocl::Set(gne::Set)

gne: : Model ::parts({ role : ocl::String }) : ocl::Set(gme::FCO)

gne: : Model ::atonParts(kind : ocl::Type) : ocl::Set(gne::Atom)

gne: : Model : : nodel Parts(kind : ocl::Type) : ocl::Set(gne::Mdel)

gne: : Model : : connectionParts(kind : ocl::Type) : ocl::Set(gne:: Connection)
gne: : Model : :referenceParts(kind : ocl::Type) : ocl::Set(gne::Reference)

gne: : Model ::setParts(kind : ocl::Type) : ocl::Set(gne::Set)

gne: : Model ::parts(kind : ocl::Type) : ocl::Set(gme::FCO)

These methods return aset which contains the immediate children of the model.

For these methods we can specify arole name, which isthe containment role of the object asit is contained
by the model. This role may differ from the role that the user defined in the meta-model. Thisis the case

151

GME Manua and User Guide

if theroleisdefined as an abstract kind in the meta-model. Because the inheritance information islost the
interpreter has to create distinguishable roles for the objects by concatenating the kind and the role.

If the kind of ki nd (i.e. the meta-kind) does not correspond to the method name, then an exception is
thrown and undef i ned isreturned.

gme: : Model ::nodel s({ kind : ocl::String }) : ocl::Set(gme::Mdel) (D)

gne: : Model : :nodel s({ kind : ocl::Type }) : ocl::Set(gne::Mdel)

gme: : Model ::atonms({ kind : ocl::String }) : ocl::Set(grme::Atom) (D)

gme: : Model ::atons({ kind : ocl::Type }) : ocl::Set(gnme::Atom)

These methods have the same functionality as the parts methods have, except these methods return the
set of contained objects which are contained recursively by the model (its immediate children and its
descendants’ models' children). The returned set will contain objects that have the appropriate meta-kind.

3.9. gne: : Proj ect

Thiskind is predefined in GME, and has exactly one instance in all models. It is introduced to facilitate
writing constraint definitions whose context cannot be any of the kinds defined in the paradigm.

3.9.1. Aliases, Supertypes

Thiskind can be accessed as Project. Its supertypeis ocl::Any.

3.9.2. Operators

operator[=](projectl : gme::Project, project2 : gme::Project) : ocl::Bool ean
operator[<>](projectl : gme::Project, project2 : gme::Project) : ocl::Bool ean

These operators are defined because of consistency. But since there is only one instance of
gne: : Proj ect inall projects, these features are useless.

3.9.3. Attributes
gne: : proj ect:: nane
Returns the name of the project.

This attribute can be used to check whether the project isincluded as alibrary in another project.

3.9.4. Methods
gnme::project::alllnstancesOf(kind : ocl::Type) : ocl::Set(gne:: Object)

Returnsaset which contains all abjectsin the project whose kind is kind.

If kind is not defined in the paradigm, an exception is thrown and undefined is returned.
gne: : proj ect::rootFol der() : gne:: Root Fol der

Returns the root folder of the project.

3.10. gne: : Root Fol der

Thiskind is predefined in GME, and has exactly one instance in all projects. It is introduced because at
meta-modeling time this folder has to be referred to somehow.

152

GME Manua and User Guide

3.10.1.

It does not have special features regarding its meta-kind gne: : Fol der .

Aliases, Supertypes, Meta-Type

This kind can be accessed as Root Fol der. Its super-type is ocl :: Any. Its metakind is
gne: : Fol der.

3.11. gne: : Connect i onPoi nt

3.11.1.

3.11.2.

3.11.3.

3.11.4.

Thiskind corresponds to association-end in GME. Using this kind is not recommended, because it serves
meta-kind information and is not defined well in standard OCL. This kind will be likely eliminated and
replaced by a standard type (AssociationEnd) in the new implementation of OCL.

Aliases, Supertypes

Thiskind can be accessed as ConnPoi nt or Connect i onPoi nt . Its super-typeisocl : : Any.

Operators

operator[=](cpl : gne::ConnectionPoint, cp2 : gne:: ConnectionPoint) : ocl::Bool ean
operator[<>](cpl : gne:: ConnectionPoint, cp2 : gne:: ConnectionPoint) :
ocl : : Bool ean

The first operator returnst r ue if cpl and cp2 have the same role, are attached to the same fco, and
are connection-points of the same connection. If at least one of these conditionsis not satisfied, it returns
fal se.

The second operator returnst r ue if at least one of these conditionsis not satisfied.

Attributes

gne: : Connecti onPoi nt:: cpRol eName : ocl::String

Returns the role of the connection point.

Methods

gne: : Connecti onPoi nt:: cpRol eNanme() : ocl::String (D)

This method has the same functionality asthe gnre: : Connect i onPoi nt : : cpRol eNane attribute.
gne: : ConnectionPoint::target() : gne::FCO

Returns the fco to which this connection point is attached.

gne: : Connecti onPoi nt::owner() : gme:: Connection

Returns the connection that has this connection point.

gne: : Connecti onPoi nt::peer() : gme:: Connecti onPoi nt

If the connection point is owned by a binary connection, then it returns the other connection point of the
connection, otherwise it throws an exception and returns undef i ned.

gne: : Connecti onPoi nt: : usedRef erences() : ocl:: Sequence(gne:: FCO)

Returns a sequence which contains all references used by the connection point. The first reference is
farthest from the target of the connection point.

153

GME Manua and User Guide

Glossary

Glossary of Terms

aspects The parts contained withinaGME model are partitioned into viewable
groups called aspects. Parts may be added or deleted only from their
primary aspects, but may be visible in many secondary aspects.

CBS Computer Based System

Compound model

A model that can contain other objects

connection A line with a particular appearance and directionality joining two
atomic parts or parts contained in models. In the GME, connections
can have domain-specific attributes (accessed by right-clicking
anywhere on the connection).

CORBA Common Object Request Broker Architecture

COTS Commercial off-the-shelf software

DSME Domain Specific MIPS Environment

Generic Modeling A configurable, multi-aspect, graphical modeling environment used

Environment in the MultiGraph Architecture

GME See Generic Modeling Environment

GOTS Government off-the-shelf software

interpreters See Modél interpreters

Link See Link parts

Link parts Atomic parts contained within a model that are visible, and can
participate in connections, when the container model appears inside
other models.

MCL MGA constraint language. A subset of OCL, with MGA-specific
additions.

Metamodel A model that contains the specifications of a domain-specific MIPS

metamodeling environment

environment (DSME). Metamodels contain syntactic, semantic, and
presentation specifications of the target DSME.

A domain-specific MIPS environment (DSME) configured to allow
the specification and synthesis of other DSMEs.

MGA See MultiGraph Architecture

MGK MultiGraph Kernel. Middleware designed to support real-time
MultiGraph execution environments

MIC Model Integrated Computing

154

GME Manua and User Guide

MIPS Model Integrated Program Synthesis

modeling paradigm The syntactic, semantic, and presentation information necessary to
create models of systems within a particular domain.

Model interpreters High-level code associated with a given modeling paradigm, used
to trandate information found in the graphical models into forms
(executable code, data streams, etc.) useful in the domain being

modeled.

Model trandlators See Modd interpreters

MultiGraph Architecture A toolset for creating domain-specific modeling environments.

OCL Object Constraint Language (a companion language to UML)

paradigm See modeling paradigm

POSIX Portable Operating System Interface, An |EEE standard designed to
facilitate application portability

Primitive model A model that cannot contain other models

Reference parts Objects that refer to (i.e. point to) other objects (atomic parts or
models)

References See Reference parts

155

	GME Manual and User Guide
	Table of Contents
	1. Introduction
	2. Modeling Concepts Overview
	2.1. Model-Integrated Program Synthesis
	2.2. The MultiGraph Architecture
	2.2.1. The Modeling Paradigm
	2.2.2. Metamodels and Modeling Environment Synthesis

	3. The Generic Modeling Environment
	3.1. GME Main Editing Window
	3.2. GME Concepts
	3.2.1. Defining the Modeling Paradigm
	3.2.2. Models
	3.2.3. Atoms
	3.2.4. Model Hierarchy
	3.2.5. References
	3.2.6. Connections and links
	3.2.7. Sets
	3.2.8. Aspects
	3.2.9. Attributes
	3.2.10. Preferences

	4. Using GME
	4.1. GME Interfaces
	4.2. The Part Browser
	4.3. The Attribute Browser
	4.4. The Model Browser
	4.4.1. Model Browser navigation
	4.4.2. Model Browser and Interoperation

	4.5. The Model Editor
	4.5.1. The Editing Window
	4.5.2. GME Menus

	4.6. Annotations
	4.6.1. Creating Annotations
	4.6.2. Editing Annotations
	4.6.3. Implementation issues

	4.7. Managing Paradigms
	4.7.1. New Project

	4.8. Editor Operations
	4.8.1. Editing Modes
	4.8.1.1. Normal Mode
	4.8.1.2. Add Connection Mode
	4.8.1.3. Remove Connection Mode
	4.8.1.4. Set Mode
	4.8.1.5. Zoom Mode
	4.8.1.6. Visualization Mode
	4.8.1.7. Miscellaneous operations

	4.9. AutoRouter Features
	4.9.1. Autorouting policy
	4.9.1.1. GME's default routing policy
	4.9.1.2. Switching routing policy on per connection basis
	4.9.1.3. Switching routing policy on per model basis
	4.9.1.4. Auto routed connection

	4.9.2. Editing a Connection
	4.9.3. Fully customizable connection modifications
	4.9.3.1. Editing fully customizable connections

	4.10. Emergency saves and GME CrashDumps
	4.11. Help System
	4.12. Searching Objects
	4.12.1. Search Criteria
	4.12.2. Regular Expressions
	4.12.3. Search Scope
	4.12.4. Object Types
	4.12.5. Case Sensitivity and Whole Word Matching
	4.12.6. Search Results
	4.12.7. Search History

	4.13. Scripting in GME

	5. Type Inheritance
	5.1. Attributes and Preferences
	5.1.1. References and Sets
	5.1.2. Decorator Enhancements

	6. Libraries
	6.1. Library Refresh
	6.1.1. Data file compatibility issues

	6.2. Libraries and Metamodeling
	6.2.1. Importing a sub-paradigm model into a composed paradigm model
	6.2.2. Re-using a component in a composed paradigm
	6.2.3. Defining constraints in a composed metamodel

	7. Decorators
	7.1. The IMgaElementDecorator interface
	7.1.1. IMgaElementDecorator Functions

	7.2. The IMgaElementDecoratorEvents interface
	7.2.1. IMgaElementDecoratorEvents Functions

	7.3. Visual Studio 2008 Decorator Wizard
	7.4. Using the Decorator sample/skeleton codes
	7.5. Using the DecoratorLib library
	7.6. Assigning decorators to objects

	8. Metamodeling Environment
	8.1. Step by step guide to basic metamodeling
	8.1.1. Paradigm
	8.1.2. Folder
	8.1.2.1. How to specify containment for a Folder
	8.1.2.2. FCO
	8.1.2.2.1. How to create an FCO
	8.1.2.2.2. How to specify an Attribute for an FCO

	8.1.2.3. Atom
	8.1.2.3.1. How to set that an Atom is a Port

	8.1.2.4. Reference
	8.1.2.4.1. How to specify containment of a Reference in a Model
	8.1.2.4.2. How to specify the FCO to which a Reference refers

	8.1.3. Connection
	8.1.3.1. How to specify a connection between two Atoms

	8.1.4. Set
	8.1.4.1. How to specify what FCO-s a Set “Owns”

	8.1.5. Model
	8.1.5.1. How to contain a Model (Model-1) in a Model (Model-0)
	8.1.5.2. How to contain an Atom in a Model

	8.1.6. Attributes
	8.1.7. Inheritance
	8.1.7.1. How to Specify Inheritance

	8.1.8. Aspect

	8.2. Composing Metamodels
	8.2.1. Operators
	8.2.1.1. Equivalence operator
	8.2.1.2. Implementation inheritance operator
	8.2.1.3. Interface inheritance operator
	8.2.1.4. Aspect equivalence
	8.2.1.5. Folder equivalence

	8.3. Generating the Target Modeling Paradigm
	8.3.1. Aspect Mapping

	8.4. Attribute Guide
	8.5. Metamodeling Semantics

	9. High-Level Component Interface
	9.1. Builder Object Network version 1.0
	9.1.1. What Does the BON Do?
	9.1.2. Component Interface Entry Point
	9.1.3. Component Interface
	9.1.4. Example
	9.1.5. Extending the Component Interface
	9.1.6. Example

	9.2. Meta Object Network
	9.2.1. What is MON?
	9.2.2. Basic MON Classes
	9.2.3. Meta-Kinds in MON
	9.2.4. Specific GME Concepts
	9.2.5. How to Use Mon

	9.3. Builder Object Network version 2.0
	9.3.1. Architecture of BON2
	9.3.2. Wrapper Classes
	9.3.3. Objects’ Lifecycle in Components
	9.3.3.1. Objects in Add-ons and in Interpreters
	9.3.3.2. Aggregated Reference-counting

	9.3.4. Extending Interpreters
	9.3.5. Add-ons and Events
	9.3.6. BON Extension Classes
	9.3.6.1. Creating the Implementation Class
	9.3.6.2. Create the Wrapper Class
	9.3.6.3. Assigning BON Extensions
	9.3.6.4. Multiple Inheritance

	9.3.7. Essential Classes of BON2
	9.3.8. GME Metakinds in the Project
	9.3.9. ConnectionEnds and ReferencePorts
	9.3.9.1. ReferencePort and Its Container
	9.3.9.2. Relationship Between ReferencePorts
	9.3.9.3. ConnectionEnd and Connection

	9.3.10. Type Inheritance in BON2
	9.3.11. Registry, Attributes and Object Preferences

	9.4. How to create a new component project
	9.5. Extending the Component Interface using the BON Extender interpreter
	9.5.1. Naming convention used
	9.5.2. Ordering
	9.5.3. Limited extension

	10. Constraint Manager
	10.1. Features of the new Constraint Manager
	10.1.1. Standard OCL features
	10.1.1.1. New and Improved features in GME

	10.1.2. Limitations and Special Issues
	10.1.2.1. Inheritance at Meta-Modeling Time
	10.1.2.2. Retained Meta-Kind Features
	10.1.2.3. Special Features of Predefined OCL Types
	10.1.2.4. Multiplicity
	10.1.2.5. Enable-Disable Constraints
	10.1.2.6. Constraints at Modeling Time and In Libraries

	10.1.3. Types and Constraints (Expressions)
	10.1.3.1. Type Resolution
	10.1.3.2. Invariants
	10.1.3.3. Constraint Definitions

	10.2. Using Constraints in GME
	10.2.1. Constraints defined by the Paradigm
	10.2.2. Constraint Definitions (Functions)
	10.2.3. Syntax and semantic errors
	10.2.4. Evaluating the constraints
	10.2.5. Altering the evaluation process
	10.2.5.1. Short-circuit evaluation
	10.2.5.2. Evaluation Tracking
	10.2.5.3. Termination of evaluation
	10.2.5.4. Depth of on-demand evaluation

	10.2.6. Run-time exceptions and constraint violations
	10.2.6.1. Compact view
	10.2.6.2. Detailed View

	10.2.7. Constraints in the model
	10.2.7.1. Constraints’ types
	10.2.7.2. Constraint Browser
	10.2.7.3. Add and Remove constraints
	10.2.7.4. Enable and disable constraints
	10.2.7.5. Constraints in a library

	A. OCL and GME
	1. OCL Language
	1.1. Type Conformance
	1.2. Context of a Constraint
	1.3. Types of Constraints (Expressions)
	1.3.1. Invariants
	1.3.2. Pre-conditions
	1.3.3. Post-conditions
	1.3.4. Attribute Definition

	1.4. Common OCL Expressions
	1.4.1. Type casting
	1.4.2. Undefined
	1.4.3. Equality and Identity
	1.4.4. Literals
	1.4.5. Let expression
	1.4.6. If Then Else Expression
	1.4.7. Iterators

	1.5. Type Related Expressions
	1.5.1. Operators
	1.5.2. Functions
	1.5.3. Attributes
	1.5.4. Methods
	1.5.5. Associations
	1.5.6.
	1.5.7.
	1.5.8.

	1.6. Resolution Rules
	1.6.1. Implicit Variables
	1.6.2. Expression Resolution
	1.6.3.

	2. Predefined OCL Types
	2.1. ocl::Any
	2.1.1. Aliases, Supertypes
	2.1.2. Operators
	2.1.3. Methods

	2.2. ocl::String
	2.2.1. Aliases, Supertypes
	2.2.2. Operators
	2.2.3. Attributes
	2.2.4. Methods

	2.3. ocl::Enumeration
	2.3.1. Aliases, Supertypes
	2.3.2. Operators

	2.4. ocl::Boolean
	2.4.1. Aliases, Supertypes
	2.4.2. Operators

	2.5. ocl::Real
	2.5.1. Aliases, Supertypes
	2.5.2. Operators
	2.5.3. Functions
	2.5.4. Methods

	2.6. ocl::Integer
	2.6.1. Aliases, Supertypes
	2.6.2. Operators
	2.6.3. Functions
	2.6.4. Methods

	2.7. ocl::Type
	2.7.1. Aliases, Supertypes
	2.7.2. Operators

	2.8. ocl::Collection
	2.8.1. Aliases, Supertypes
	2.8.2. Attributes
	2.8.3. Methods
	2.8.4. Iterators

	2.9. ocl::Set
	2.9.1. Aliases, Supertypes
	2.9.2. Operators
	2.9.3. Methods

	2.10. ocl::Bag
	2.10.1. Aliases, Supertypes
	2.10.2. Operators
	2.10.3. Methods
	2.10.4. Iterators

	2.11. ocl::Sequence
	2.11.1. Aliases, Supertypes
	2.11.2. Operators
	2.11.3. Methods
	2.11.4. Iterators

	3. GME Kinds and Meta-Kinds
	3.1. gme::Object
	3.1.1. Aliases, Super-Meta-Kind
	3.1.2. Operators
	3.1.3. Attributes
	3.1.4. Methods

	3.2. gme::Folder
	3.2.1. Aliases, Super-Meta-Kind
	3.2.2. Method

	3.3. gme::FCO
	3.3.1. Aliases, Super-Meta-Type
	3.3.2. Attributes
	3.3.3. Methods

	3.4. gme::Connection
	3.4.1. Aliases, Super-Meta-Type
	3.4.2. Methods

	3.5. gme::Reference
	3.5.1. Aliases, Super-Meta-Type
	3.5.2. Methods

	3.6. gme::Set
	3.6.1. Aliases, Super-Meta-Type
	3.6.2. Methods

	3.7. gme::Atom
	3.7.1. Aliases, Super-Meta-Type

	3.8. gme::Model
	3.8.1. Aliases, Super-Meta-Type
	3.8.2. Methods

	3.9. gme::Project
	3.9.1. Aliases, Supertypes
	3.9.2. Operators
	3.9.3. Attributes
	3.9.4. Methods

	3.10. gme::RootFolder
	3.10.1. Aliases, Supertypes, Meta-Type

	3.11. gme::ConnectionPoint
	3.11.1. Aliases, Supertypes
	3.11.2. Operators
	3.11.3. Attributes
	3.11.4. Methods

	Glossary

