Design Space Exploration
Tool

“DESERT”

Endre Magyari, | SIS
2002 April

Interface models

The DESERT definestwo APIs, one for submitting the datainto DESERT, the Input
Interface, and another one for dumping the output, the pruned Design Space, the Output or
Back Interface. These interfaces and APIs are provided by the UDM Framework. The
DESERT expects an input data network based on the input interface model, and outputs an
output data network based on the output interface model. The input and the output data
networks may persist on any of the supported UDM backends. Both the input and the output
interface are defined in form of UML class diagrams.

Input Interface model
There are three different basic terms. Space, Domain, and Property.

Spaces
DeszenBase
DeserSystem - - Integer
Systemblame : String T [name: String
externallD ; Integer
I
il |
ConstraintSet Space Relation
decomposition : Boolean | | tvpe : String
+ 4
0= (1
i context =
camsltant 0.7 D1 Elerent [T ElementRelation

El

ex¥pression ; String 7| decomposition : Boolean T
j dst |07

Figurel Input Interface Model - Hierarchical space

By space we mean an AND-OR-L EAF tree of elements. This, from the constraint
satisfaction tool's point of view means that the OR nodes are variables, and their possible
values are their children. The type of the node it's controlled by it's decomposition
(Boolean) attribute and the number of sub-elements(children) of a node in the following

way:}

If the number of children is =0, then the typeis LEAF.
If the number of children is > 0 and decomposition, then the type is AND
If the number of children is > 0 and not decomposition, then the type is OR

All the nodes may have Constraints Each constraint has a context associated,
which is anode of any type, and the Constraints are contained in Constraintset.

Constraintsets are there just for the reason to provide a mechanism for grouping
the Constraintsin several categories, which are specific to application. Well, partially
true: There is one special Constraintset, the one with name “Implicit Constraints’. The
Constraintsin this constraint set are automatically applied and not shown on the
DESERT user interface. The expression attribute is the constraint expression, in an
extended OCL language. Thiswill be discussed later in this document.

ElementRelations are permitted between the element to pass some extra
information to the tool. These relations might be used when composing Properties.

DesertBase is an abstract base class; each class in the input interface model is
directly or indirectly inherited from this class. The value of the id attribute should be
unique for each UDM object passed to DESERT. The name attribute is used in the
constraint expression; so, they should be unique as well at a certain level in the hierarchy.
The external ID attribute may carry extrainformation throughout DESERT about the
object, which is application specific. The values if these attributes are preserved through
DESERT, so thisis how the application can identify and match the objects when reading
them back from DESERT.

DesertSystem is just a container for everything in the input model. This is needed
because of the nature of the UDM, which require everything to be contained in a
“RootObject™.

Properties

DezertBase
n
Frope
Element perty —
ouner groperty FCM_STR . String I:Idl:’l‘n;al?
- o | Mla Integer [~ " | &
. CLUSTMarme : 5tring
assignments‘“n
T A

Assignedvalues

Member | aues properties | YariahleFraperty ConstantProperty
0= ' 0.-

;

value |III..1 value_of |I:I.."

Figure2 Input Interface Model - Properties

As mentioned above, leaf nodes can have Properties. These Properties then can
be used to express constraints A propertyis owned by an element and always belongs to
adomain. Thisis the set of members that can be assigned to properties as values. The
property values can be composed in the AND-OR-L EAF treg, if the Property to be
composed is defined for all the leaf nodes in the sub-tree rooted at the node at which the
property should be evaluated.

The PCM_STR attribute specifies how a Property should be composed, when the
constraint engine needs to evaluate it at an AND or an OR compound node. The possible
values for this attribute are:

PCM_ADD - specifies that the property is additive.

PCM_MUL - gpecifies that the property is multiplicative

PCM_AMED - specifies that the property value of the compound node is equal to
the arithmetic median of the same property values of the children.

PCM_GMED - specifies that the property value of the compound node is equal to
the geometric median of the same property values of the children.

PCM_MIN - gpecifies that the property value of the compound node is equal to
the minimum of the same property values of the children.

PCM_MAX - gpecifies that the property value of the compound node is equal to
the maximum of the same property values of the children.

PCM_NONE - specifies that the property is it not a composable property. Thus,

forcing the constraint engine to evaluate it at a compound node by adding such a
congtraint at a compound node will generate an error.

PCM_CUST - gpecifies that there will be a custom function linked against
DESERT, which will compose this property whenever is needed. The CUSTName
attribute will hold the name of the custom function.

There are two kinds of properties: Variable property and Constant property.

As one would easily guess, Variable Properties will be the variables of the
constraint engine, thus, they may be assigned to more than one member. The assignments
are done by the association class Assigned values, which are contained in elements. Each
Assigned value object points to a member with it's values pointer and to a Variable
property with it's properties pointer.

Constant properties are there to define Properties that are constant for aleaf
node. Even if thisis not used directly by the constraint engine, it's still needed when one
needs to evaluate a property at a compound node, which implies that a certain property
must be defined for each leaf node in the sub tree.

Again, everything is derived from the DesertBase abstract base class. One should
pay extra attention to the id and externalID attributes of the Assigned values, because
DESERT will return with set of Configurations which will contain a set of valid
Assignments. In most of the cases the application will need to match the Assignment
objects in the output data network with the Assigned Values objects in the input data
network. This will be possible, since the Assignment object will preserve the ids of the
Assigned values objects.

The abstract base class Property captures the common functionalitiesin Variable
properties and Constant Properties, that these are contained in the owner Element, they
operate on a Domain.

Domains

DeserntBase

mMember Feldtian Ciomain

NaturalMernber HaturalDomain

[*! minimum : Integer

value . Integer ; :
maximum : Integer

MemberRelation

|

=re |04t |07
Custormmlember members CustomDomain
[T i [T i i
decomposition : Boolean decomposition ; Boolean

I

Figure 3 Input Interface Model - Domains

A domainisbasically aset of values, which properties may be assigned to. There are two
kinds of domains. Custom domains and Natural Domains.

The Custom Domain is again an AND-OR-LEAF tree and it has the same syntax as
Space. However, the decomposition attribute is currently not used in the DESERT. The nodes of
thistree are the Custommembers, which act exactly the same way as elementsin the space.

Member relations are there for the same reason element relations are there. One could use
thisinformation in a custom function when composing properties.

The Natural Domainis aset of natural numbers, which is defined by its attributes
minimumand maximum. However, if one wants to actually assign avalue from a natural domain,
then one would need to create a natural member with that value in the natural domain.

The abstract base classmember captures the common functionality of Custom members
and Natural members. Members can be assigned as val ues to Properties.

The abstract base class Domain captures the common functionality of Custom domains
and Natural domains that there are Properties assigned to them.

Output Interface model

Assignment Configuration
id: Irteger assignments - Sitri
externallD - Integer | inda_me 'mterme%
narme : String ' -

configurations |07

AlternativeAssignment | | PropemtyvAssignment

b J

atemative |01 warzbleproperties YariahleProperty walue_of, walue Walue \DIELUES - DeserBackSystem
(i P 0.F h - ;
Element altgmative_af name: String SysternMame : String
0.1

externalll Integer (awner

id Integer [.
. " elamerts

name : Btring =

Custommember Maturalermhbear

externallD : Integer | | value : Integer
id Integer
name : String

Figure4 Output Interface Model

The above class diagram was designed based on the idea that DESERT outputs
valid configurations that satisfy the applied constraints Each configuration will have
exactly one Natural member or Custom member assigned to each Variable property, and
exactly one node (=Element) for each compound rnode of type OR in space.

The DesertBackSystemis a class that contains everything. This will be the type of
the root object of the output data network. DesertBackSystem contains values, el ements,
and configurations that are objects of type value, element, and configuration,
respectively. Further, the elementscontain Variable properties. Elementsand Variable
properties have exactly the same semantics as in the input interface model.

A Configuration object identifies a particular configuration in the design space.
The valid configurations are numbered, beginning from 1, and these are the values of
their id attribute. The name attribute value will be set to “Conf. no. x”, wherex istheid
of the configuration. A configuration contains assignments, which can be of two kinds:
Property Assignment and Alter native Assignment. Alter native assignmentsassign a
compound OR node (alternative_of) to a child node (alternative). Property assignments
assign a Value to a Variable Property. However, if there are multiple Assigned value
objects in the input data network assigning the same member to the same Variable
property, for each such Assigned value object there will be a Property Assignment object
in the output data network.

The Value objects, and it's derivates, Custom member and Natural member
correspond to the member, custom member and ratural member objects, respectively,
defined in the input interface model.

The vaues of the id, externalID attributes of the objects in the output data
network are equal to the values of the id and externalID attributes of the corresponding
objects defined in the input interface model.

The Constraint Language

The congtraint language in DESERT is an extended OCL.
Command Reference for the extensions:

Global functions:
proj ect() - returns the DESERT project

Project functions:
name() - returns the Space or Custom domain named “name’

Space and Custom domain functions:

children() - returns the collection of children(not recursive) nodes of a Space
or a Custom domain

children(*name'’) - returns the node named “name” from the children of a Space or a
Custom domain

Custom member and Element (node) functions:

children() - returns the collection of children(not recursive) nodes of a node
children(*name'™”) - returns the node named “ name” from the children of a node

Element functions:

implementedBy() - for an OR type node returns the selected alter native(:=the value)
from its children.

name() - returns the value of the property named “ name” for the node. If
this property operates on a Custom domain, it will return a Custom member, if it operates
on aNatural domain, it will return with an arithmetic value. If the context is aleaf node,
it will directly read its property value, if it's not, it will return a composed value.

How to use it?

Desert is available in a binary distribution.

It contains the following files:

DesertTool .exe - application executable

Desert.dll - application extension

DesertD.dll - application extension(DEBUG)
Desertlfacexml - input interface model class diagram
DesertlfaceBack.xml - output interface model class diagram
Xerces-c_1 2D.dll - 3 party dll

Xercesc 1 _2.dll - 3% party dil debug

Desert.pdf - this documentation

DesertTool.exe is a standalone MFC application.

When invoking without command line parameters, it starts with a file open dialog
for the input data network. Once the data read, a GUI comes up, where the constraints
can be applied one by one. By exiting this application, another file open dialog comes up
for the output data network. The configurations are saved.

DesertTool .exe aso can be invoked with a single command line parameter, which
would specify the input data network skipping thus the file open dialog for the input.
After exiting, the output is also generated automatically and saved using the same UDM
backend technology as the input data network, in a file with the same name as the input
data network, but a“ _back” is suffixed.

DesertTool also registersitself in the system registry, so you can invoke and make
it auto- magically generate the output.

The code for this:

HKEY hKey;

DWORD dwSize = _MAX_PATH;
DWORD dwDataType = REG_SZ;
DWORD dwValue =0;

char desert_path[_ MAX_PATH];

if(::RegOpenKeyEx(HKEY_CURRENT_USER, "Software\\ISIS\DesertTool\Data", 0, KEY_QUERY_VALUE,&hKey) ==
ERROR_SUCCESS)

{
if(::RegQueryValueEx(hKey,"Path", NULL, &dwDataType, (unsigned char *)desert_path,&dwsSize) != ERROR_SUCCESS)

/I Close key
::RegCloseKey(hKey);
/lhanfle registry error
return;

}

/I Close key

::RegCloseKey(hKey);

Y/eo if RegOpenKeyEx is ok

else

{ /Ihandle registry error
return;

}

/linvoke DesertTool, and wait until it finishes
_spawnl(_P_WAIT, desert_path, desert_path, (LPCTSTR)str, NULL);

How to compile it?

Case Study: Desert in MILAN

